Тема 9. Растяжение и сжатие. Продольные силы и их эпюры. Закон Гука
Растяжением или сжатием называется такой вид деформаций, при котором в любом поперечном сечений бруса возникают только продольная сила . Брусья с примолинейной осью называют стержнями (рис.1).
Рис. 35.
Примой брус постоянного поперечного сечения , длиной , жестко защемленный одним концом и нагруженный на другом конце растягивающей силой F (рис.35). Под действием этой силы, брус удлинится на некоторою величину которую назовем абсолютным удлинением. Отношение абсолютного удлинения к первоначальной длине назовем относительным удлинением и обозначим .
При расчете, мы будем считать, что растяжение и сжатие бруса связано только с приложенными внешними силами, то есть учитываем только напряжения, действующие на стержень, температуру и время действий сил не будем учитывать.
При растяжении и сжатии продольные силы определяется методом сечении. Правило знаков будем определять следующим образом: растягивающие, то есть, направленные от сечения, продольные силы будем считать положительными, сжимающие, то есть направленные к сечению, будем считать отрицательными.
Для наглядного изображения распределения вдоль оси бруса продольных сил и нормальных напряжений строят графики, называемые эпюрами, причем для нормальных напряжений применяется то же правило знаков, что и для продольных сил.
При растяжении и сжатии в поперечных сечениях бруса возникают только нормальные напряжения, равномерно распределенные по сечению и вычисляемые по формуле:
площать поперечного сечения бруса,
Очевидно, что при растяжении и сжатии форма сечения на напряжения не влияет.
Условие прочности бруса при растяжении и сжатии определяется следующим образом:
Здесь называют допускаемым напряжением, максимальная продольная сила.
Напряжения и деформаций при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Гоберта Гука. Закон Гука при растяжении и сжатии справедлив лишь в определенных пределах нагружения и формируется так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению бруса.
Математически закон Гука можно вписать в виде равенства:
Коэффициент пропорциональности Е характеризует жесткость материала и называется модулем продольной упругости. Модуль упругости и напряжения выражаются в одинаковых единицах.
Если в формулу закона Гука поставим выражения и то получим:
Контрольные вопросы
1. Что такое растяжение-сжатие?
____
2. По какому методу определяется нормальные силы?
__
3. По какой формуле определяется относительное удлинение или укорочение?
____
4. Какое напряжение появляется при растяжении-сжатии, и по какой формуле определяется?
____
5. Как пишется условие прочности при растяжении-сжатии?
____
6. Что такое модуль упругости, и в чем измеряется?
____
7. От чего зависит модуль упругости?
__
8. По какой формуле определяется абсолютное удлинение или укорочение бруса при растяжении-сжатии?
____
Пример 4.1.
Для данного ступенчатого бруса (рис.36.) построить эпюру продольных сил, эпюру нормальных напряжений и определить перемещение свободного конца, если .
Рис.36.
1. Разбиваем брус на участки как показоно на рис. 37а.
Рис.37.
2. По методу сечения определяем ординаты эпюр и каждого сечения.
) | |
) | |
) |
4. Строим эпюру (рис. 37б.)
5. Определяем перемещение свободного конца бруса.
Пример 4.2.
Для данного ступенчатого бруса (рис.38.) построить эпюру продольных сил, эпюру нормальных напряжений и определить перемещение свободного конца, если .
Рис. 38.
1. Разбиваем брус на участки как показоно на рис. 39а.
2. По методу сечения определяем ординаты эпюр и каждого сечения.
Рис. 39.
) | |
) | |
) |
3. Строим эпюру (рис. 37б.)
4. Определяем перемещение свободного конца бруса.
Для решения первой задачи контрольной работы 2 следует выполнить следующие действия:
1) Изучить темы 7,8,9.
2) Ответить на контрольные вопросы по темам 7,8,9.
2) Выполнить самостоятельно пример 2.2.
Данные для своего варианта первой задачи контрольной работы 2 посмотрите в таблице 4. Расчетную схему надо посмотреть в рис.40.
Таблица 4 (для первой задачи контрольной работы 2)
Номер варианта | Номер схемы на рис. 40. | |||||
кН | ||||||
I | 3,6 | 1,4 | ||||
II | 2,4 | 1,1 | ||||
III | 3,5 | 2,5 | ||||
IV | 2,9 | 1,4 | ||||
V | 1,9 | 1,1 | ||||
VI | 3,7 | 2,3 | ||||
VII | 4,4 | 2,6 | ||||
VIII | 4,6 | 3,1 | ||||
IX | 4,2 | 3,2 | ||||
X | 3,1 | 1,5 | ||||
I | 3,6 | 2,4 | ||||
III | 3,5 | 2,5 | ||||
V | 2,8 | 1,2 | ||||
VII | 3,0 | 2,2 | ||||
II | 2,8 | 1,4 | ||||
IV | 2,4 | 1,2 | ||||
VI | 3,6 | 2,6 | ||||
IX | 2,1 | 1,0 | ||||
VIII | 2,6 | 1,3 | ||||
X | 3,8 | 1,6 | ||||
V | 1,4 | 3,2 | 1,8 | |||
III | 3,4 | 1,5 | ||||
VII | 2,3 | 2,9 | 1,9 | |||
VIII | 3,6 | 1,7 | ||||
II | 2,9 | 1,6 | ||||
I | 3,4 | 2,1 | ||||
III | 3,5 | 2,4 | ||||
V | 3,6 | 2,3 | ||||
VII | 3,2 | 2,2 | ||||
II | 3,6 | 2,6 |
Рис. 40.