Плотности электрического заряда.
Всякий движущийся заряд образует конвекционный электрический ток. Заряд, проходящий в единицу времени через единицу площади, перпендикулярной к направлению движения заряда, определяет плотность электрического тока. Если есть скорость непрерывно распределенного заряда в точке в момент то вектор плотности тока равен
Для системы точечных зарядов согласно (4.02)
где скорость движения заряда
Проведем некоторую поверхность. Если единичный вектор нормали к элементу поверхности (в случае замкнутой поверхности будем всегда брать внешнюю нормаль), то сила электрического тока через поверхность о определяется как поток вектора через эту поверхность
В силу исторической традиции за направление тока принимается направление движения положительных зарядов.
Электрический заряд подчиняется закону сохранения: заряд замкнутой системы сохраняет постоянную величину. По-видимому, закон сохранения электрического заряда столь же общий и универсальный, как и законы сохранения энергии, импульса и момента импульса.
Вопрос №Вопрос №13
Момент инерции материальной точки относительно оси вращения - произведение массы этой точки на квадрат расстояния от оси.
При заданной массе тела момент инерции зависит как от распределения этой массы по объему тела, так и от положения и направления оси вращения.
Момент инерции твердого тела - это величина, характеризующая распределение массы в теле и являющаяся мерой инертности тела при вращательном движении.
Формула момента инерции:
Единица момента инерции - килограмм-метр в квадрате.
Теорема Штейнера:
Момент инерции тела относительно какой-либо оси равен моменту инерции относительно параллельной оси, проходящей через центр инерции, сложенной с величиной m*(R*R), где R - расстояние между осями.
Угловое ускорение, которое тело приобретает под действием момента сил, прямо пропорционально результирующему моменту всех внешних сил, приложенных к телу, и обратно пропорциональна моменту инерции тела относительно некоторой оси
Вопрос№3
Поступательное движение - это движение, при котором траектории всех точек тела одинаковы и любая прямая, жестко связанная с движущимся телом, остается параллельной своему первоначальному положению.
Реальные тела могут быть представлены как системы из взаимосвязанных точечных тел (частиц), описание движения таких тел сводится к определению траекторий их отдельных точек. Допустим, траектория движения точки нам известна. Рассмотрим перемещение материальной точки из положения 1 в положение 2 за промежуток времени .
Средняя скорость движения определяется как отношение вектора перемещения к промежутку времени, за который перемещение произошло:
и характеризует быстроту изменения радиус-вектора с течением времени t.
Для точного описания движения вводят понятие мгновенной скорости, т.е. скорости в конкретный момент времени t или в конкретной точке траектории.
Скорость материальной точки представляет собой вектор, характеризующий направление и быстроту перемещения материальной точки относительно тела отсчета
Положение материальной точки в пространстве в данный момент времени определяется по отношению к какому-либо другому телу, которое называется телом отсчета. С ним связывается система отсчета – совокупность системы координат и часов, связанных с телом, по отношению к которому изучается движение каких-нибудь других материальных точек.
Вопрос№23
Если тело перемещается вблизи поверхности Земли, то на него действует постоянная по модулю и направлению сила тяжести Работа этой силы равна изменению некоторой физической величины mgh (где h – высота, отсчитываемая от некоторого нулевого уровня), взятому с противоположным знаком. Эту физическую величину называют потенциальной энергией тела в поле силы тяжести:
Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень. В то же время она равна работе внешних сил на перемещение тела с нулевого уровня на требуемую высоту. Потенциальная энергия Eр зависит от выбора нулевого уровня отсчета. Физический смысл имеет не сама потенциальная энергия, а ее изменение ΔEр = Eр2 – Eр1 при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.
Вопрос №55
Если в проводнике течет постоянный ток и проводник остается неподвижным, то работа сторонних сил расходуется на его нагревание. Опыт показывает, что в любом проводнике происходит выделение теплоты, равное работе, совершаемой электрическими силами по переносу заряда вдоль проводника. Если на концах участка проводника имеется разность потенциалов , тогда работу по переносу заряда q на этом участке равна
По определению I= q/t. откуда q= I t. Следовательно
Так как работа идет па нагревание проводника, то выделяющаяся в проводнике теплота Q равна работе электростатических сил
(17.13)
Соотношение (17.13) выражает закон Джоуля-Ленца в интегральной форме. Введем плотность тепловой мощности , равную энергии выделенной за единицу время прохождения тока в каждой единице объема проводника
где S - поперечное сечение проводника, - его длина. Используя (17.13) и соотношение , получим
Но - плотность тока, а , тогда
с учетом закона Ома в дифференциальной форме , окончательно получаем
(17.14)
Формула (17.14) выражает закон Джоуля-Ленца в дифференциальной форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля
№62
Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:
В системе СИ единица электроемкости называется фарад (Ф):
Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, – обкладками.
Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами (рис. 1.6.1); однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния. В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками (рис. 1.6.2). Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля (см. § 1.4).
Рисунок 1.6.1.
Поле плоского конденсатора
Рисунок 1.6.2.
Идеализированное представление поля плоского конденсатора. Такое поле не обладает свойством потенциальности
Каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого выражается соотношением (см. § 1.3)
Согласно принципу суперпозиции, напряженность поля, создаваемого обеими пластинами, равна сумме напряженностей и полей каждой из пластин:
Внутри конденсатора вектора и параллельны; поэтому модуль напряженности суммарного поля равен
Вне пластин вектора и направлены в разные стороны, и поэтому E = 0. Поверхностная плотность σ заряда пластин равна q / S, где q – заряд, а S – площадь каждой пластины. Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed, где d – расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:
Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:
Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы. Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2. Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L. Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:
(сферический конденсатор),
(цилиндрический конденсатор).
Конденсаторы могут соединяться между собой, образуя батареи конденсаторов. При параллельном соединении конденсаторов (рис. 1.6.3) напряжения на конденсаторах одинаковы: U1 = U2 = U, а заряды равны q1 = С1U и q2 = C2U. Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом q = q1 + q2при напряжении между обкладками равном U. Отсюда следует
Таким образом, при параллельном соединении электроемкости складываются.
Рисунок 1.6.3.
Параллельное соединение конденсаторов. C = C1 + C2
Рисунок 1.6.4.
Последовательное соединение конденсаторов.
При последовательном соединении (рис. 1.6.4) одинаковыми оказываются заряды обоих конденсаторов: q1 = q2 = q, а напряжения на них равны и Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками U = U1 + U2. Следовательно,
При последовательном соединении конденсаторов складываются обратные величины емкостей.
Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею
Вопрос№23
Если тело перемещается вблизи поверхности Земли, то на него действует постоянная по модулю и направлению сила тяжести Работа этой силы равна изменению некоторой физической величины mgh (где h – высота, отсчитываемая от некоторого нулевого уровня), взятому с противоположным знаком. Эту физическую величину называют потенциальной энергией тела в поле силы тяжести:
Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень. В то же время она равна работе внешних сил на перемещение тела с нулевого уровня на требуемую высоту. Потенциальная энергия Eр зависит от выбора нулевого уровня отсчета. Физический смысл имеет не сама потенциальная энергия, а ее изменение ΔEр = Eр2 – Eр1 при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.
50.Напряжённости и потенциал равномерно объёмно заряженного шара
Ничего более дельного на эту тему я не нашёл на просторах сети сореееееееееее.