Статистическая совокупность и статистический показатель

Предмет статистики

Предмет статистики: количественная сторона массовых социально-экономических явлений.

Данные, с которыми приходится работать в статистике, делятся на три типа:

1) пространственные данные (N→∞, t=1) – данные об однородных объектах за один и тот же период времени: финансовые отчеты предприятий за определенный квартал или год, результаты обследования домашних хозяйств за период, данные о ВВП различных стран в каком-либо конкретном году и т.п.

2) временные ряды (N=1, t→∞) – последовательные значения одной экономической переменной в различные периоды времени: ежедневные значения курса доллара по отношению к рублю за период с 1 января 2007 г. до 1 сентября 2008 г., значения ВВП России за год в период с 1993 до 2007 г., и т.п.

3) панельные данные (N→∞, 1< t <∞) – до некоторой степени обобщение временных рядов и пространственных данных. Например, если с одних и те же предприятий каждый год собираются одни и те же показатели их хозяйственной деятельности, получится массив данных, в котором содержатся и данные об однородных объектах за один и тот же период времени, и последовательные значения одной экономической переменной в различные периоды времени (ежегодный объем выпуска продукции за период 1995 по 2007 гг. по 10 крупнейшим предприятиям угледобывающей отрасли).

Статистическая совокупность и статистический показатель

Статистическая совокупность

Статистическая совокупность – множество социально-экономических объектов или явлений общественной жизни, объединенных некой качественной основой, общей связью, но отличающихся друг от друга отдельными признаками.

Пример: совокупность домохозяйств, семей, предприятий, фирм, городов области и т.д.

Совокупности могут быть однородными и разнородными.

Совокупность однородная, если один или несколько изучаемых существенных признаков ее объектов являются общими для всех единиц. Например, мужской пол, возраст 18-25 лет, малые предприятия, предприятия торговли и т.д.

Совокупность разнородная, если в нее входят явления разного типа. Совокупность может быть однородна в одном отношении и разнородна в другом: например, торговые предприятия любого размера (малые, средние, крупные).

Единица совокупности – отдельная, первичная, неделимая часть совокупности, обладающая признаками, подлежащими регистрации, и основой ведущегося при обследовании счета.

Признак совокупности – качественная особенность единицы совокупности. Например, признаки человека: возраст, пол, образование и т.д.; признаки предприятия: форма собственности, отрасль, численность занятых, эффективность и т.д.

Классификация признаков:

1) по характеру выражения

- атрибутивные (описательные),

- количественные

а) альтернативные (принимают только два значения),

б) дискретные (принимают только целочисленные значения),

в) непрерывные (принимают любые значения),

2) по способу измерения

- первичные (измеряются, считаются, взвешиваются…),

- вторичные (рассчитываются),

3) по отношению к характеризуемому объекту

- прямые (непосредственно присущи объекту),

- косвенные (опосредованно присущи объекту),

4) по отношению ко времени

- моментные (характеризуют объект в один момент времени),

- интервальные (характеризуют результаты процессов за период времени)

Важной чертой любой статистической совокупности является наличие вариации – изменение величины либо значения признака при переходе от одной единицы совокупности к другой.

Если изменения изучаемого явления происходят в разные периоды времени и носят характер закономерности, то говорят о динамике признака.

Статистические закономерности устанавливаются с помощью закона больших чисел: при определенных условиях (наличие вероятностных процессов, независимость, большое число факторов) совместное действие большого числа случайных факторов приводит к результатам практически независящим от случая.

Статистический показатель

Статистика применяет не числа, а показатели.

Статистический показатель – число, характеризующее ту или иную особенность признака или явления.

Основными задачами в этом направлении являются:

1) правильное определение содержания статистического показателя (ВНП, национального дохода, производительности труда и т.п.);

2) разработка методологии подсчета и расчета статистического показателя.

Система статистических показателей – совокупность статистических показателей, отражающая взаимосвязи, которые объективно существуют между явлениями.

Система статистических показателей охватывает все стороны жизни общества на различных уровнях:

− страны – макроуровень;

− региона – мезоуровень;

− предприятий, фирм, объединений, семей, домохозяйств – микроуровень.

Вторичная группировка

Иногда приходится пользоваться уже имеющимися группировками, которые не удовлетворяют требованиям анализа. Например, имеющиеся группировки могут быть несопоставимы из-за различного числа выделенных групп или неодинаковых границ интервалов. В этом случае используется метод вторичной группировки, являющейся особым видом группировки.

Вторичная группировка – образование новых групп на основе ранее осуществленной группировки.

Получение новых групп на основе имеющихся возможно двумя спо­собами перегруппировки: объединением первоначальных интервалов (пу­тем их укрупнения) и долевой перегруппировкой (на основе закрепления за каждой группой определенной доли единиц совокупности).

Пример 3.4. Распределение акционеров двух районов области по размеру диви­дендов на одну акцию в 2006 г.

Первый район Второй район
№ группы Группы ак­ционеров по размеру ди­видендов, тыс. руб. Удельный вес акционе­ров группы, % (к итогу) № группы Группы ак­ционеров по размеру ди­видендов, тыс. руб. Удельный вес акционе­ров группы, % (к итогу)
10 - 40 10-60
40 - 80 60 - 120
80 - 120 120 - 200
120 - 160 200 - 300
160 - 200 - - -
Итого - - -

Приведенные данные не позволяют сравнить распределение ак­ционеров двух районов по размеру дивидендов на одну акцию, так как в районах имеется различное число групп акционеров, и различны величины интервалов.

Необходимо ряды распределения привести к сопоставимому виду. За основу сравнения возьмем структуру распределения акционеров вто­рого района (как наиболее крупную). Следовательно, по первому рай­ону нужно произвести вторичную группировку или перегруппировку акционеров, образовав такое же число групп и с теми же интервалами, как во втором районе.

В результате перегруппировки получаем следующие сопоставимые данные.

№ груп­пы Группы акционе­ров по размеру дивидендов на акцию, тыс. руб. Удельный вес акционеров группы, % к итогу Расчет
Второй район Первый район
10 - 60 18 + 0,5 • 12 = 24
60 - 120 0,5 • 12 + 40 = 46
120 - 200 25 + 5 = 30
200 - 300 - -
Итого -

Анализ данных вторичной группировки позволяет сделать вывод о том, что акционеры второго района имеют более высо­кие размеры дивидендов (120 тыс. руб. и более на одну акцию выплачи­вают 70% акционеров этого района, а в первом районе — только 30% акционеров).

Относительные показатели

Основные виды относительных величин чаще выражают­ся отвлеченными числами, но могут быть также именованны­ми относительными показателями. Их построение связано с применением различных методов статистики.

Относительные показатели можно подразделить на сле­дующие группы.

1. Характеризующие структуру объекта. Это доля (удельный вес) - отношение части к целому. Например, отношение площади каждой из сельскохозяйст­венных культур к общей посевной площади; числа женщин к общей численности населения города, республики. Выражаются в процентах или промилле (ты­сячных долях).

2. Характеризующие динамику процесса, изменение во времени. Это отношения показа­телей, характеризующих объект в более позднее время (теку­щий период), к аналогичным показателям того же объекта в более ранний (базисный) период. Их называют темпами роста. Выражаются в разах или в процентах.

3. Характеризующие взаимо­связь признаков в совокупности явлений. Например, связь уровня душевого дохода с размером потребления мяса или фруктов на одного человека; связь дозы удобрений с урожайностью картофеля и т.п. К ним относятся коэф­фициенты корреляции, эластичности, детерминации, аналитические индексы.

4. Характеризующие соотно­шение разных признаков того же объекта между собой (ино­гда их называют показателями интенсивности). Например, производительность труда – отношение произведенной про­дукции в натуральном или стоимостном выражении к затра­там труда на ее производство и др. Выражаются именованными чис­лами с двойными единицами измерения обоих сравниваемых признаков: в рублях за 1 час труда, в центнерах с 1 га площади.

5. Отношения фактически наблюдаемых вели­чин признака к его нормативным, плановым, оптимальным или максимально возможным, величинам. Это широко рас­пространенные на производстве показатели выполнения норм выработки, норм расхода материалов и других ресурсов. Отношения наблюдаемых величин признака к оптимальным или плановым характеризуют приближение изучаемого про­цесса к идеалу.

6. Сравнения разных объектов по одинаковым признакам. Сравнение урожайности одной и той же культуры в том же году между хозяйствами, областями; сравнение показателей производства или уровня жизни насе­ления в разных странах — это обычные приемы познания.

Статистические графики

Статистический график – условное изображение числовых величин и их соотношений посредством линий, геометрических фигур, рисунков или географических карт-схем.

Главное достоинство графиков – наглядность рассмотрения статистических данных.

Основными элементами графиков, изображающих количественные соотношения, являются шкала, масштаб, оси координат и числовая (ко­ординатная) сетка.

График должен иметь заглавие, отражающее содержание изображаемого явления, время и место, к которому относятся данные, и расшифровку ус­ловных обозначений. Заглавие пишется снизу графика. Для большей наглядности графика применяют раз­личную штриховку, окраску и т. д.

По способу построения графики делятся на диаграммы, картограммы, картодиаграммы.

Диаграммы являются наиболее распространенными. Виды диаграмм: линейные, точечные, плоскостные, объемные, фигурные.

Линейные графики используются для представления количественных переменных:

− характеристики вариации их значений (оси: Y – значения признака, X – номер наблюдения),

− полигон (оси: Y – частоты, X – значения признака, из первой и последней точек перпендикуляры на ось X),

− кумулята (оси: Y – накопленные частоты или частости, X – значения признака),

− огива (оси: Y – значения признака, X – накопленные частоты или частости),

− кривая Лоренца (оси: Y – нарастающие доли значений признака в общем объеме, X – накопленные частости) строится для изучения концентрации какого-либо признака в тех или иных группах совокупности.

− динамики (Y – значения признака, X – время) (рис. 5.1),

− взаимосвязи между переменными (Y – значения зависимого признака, X – значения независимого признака: уравнение регрессии).

Статистическая совокупность и статистический показатель - student2.ru

Рис. 5.1. Валовый региональный продукт Челябинской области, млн. руб.

Точечные диаграммы (поле корреляции) обычно используют для анализа взаимосвязи между переменными (Y – значения зависимого признака, X – значения независимого признака).

Плоскостные диаграммы:

− столбиковая (гистограмма): обычно для изображения интервального вариационного ряда (оси: Y – частоты или плотности, X – интервалы) (рис. 5.2),

− ленточная (горизонтальная столбиковая),

− секторная: применяется для иллюстрации структуры изучаемой совокупности (круг – 100%, сектора – части совокупности). Пример секторной диаграммы приведен на рис. 5.3.

Гистограммы строятся наиболее часто.

Статистическая совокупность и статистический показатель - student2.ru

Рис. 5.2. Численность населения города, тыс. чел.

Статистическая совокупность и статистический показатель - student2.ru

Рис. 5.3. Структура промышленного производства в России в 2007 г.

Возможно одновременное построение плоскостных и линейных диаграмм (рис. 5.4).

Статистическая совокупность и статистический показатель - student2.ru

Рис. 5.4. Объемы производства по городу и градообразующему предприятию за 1998-2003 гг., млн. руб.

Объемные диаграммы строятся аналогично плоскостным диаграммам только в виде объемных столбиков и секторов.

Фигурные диаграммы усиливают наглядность изображения, так как включают рисунок изображаемого показателя. Площадь фигуры соответствует величине показателя.

Картограмма применяется для изображения географической характеристики изучаемых явлений. Она показывает размещение изучаемого явления, его интенсивность на определенной территории – республике, области, районе.

Картограммы бывают фоновые и точечные.

Картодиаграмма – сочетание диаграммы с географической картой. Используются различные фигуры, которые размещаются на контуре географической карты.

В настоящее время пространственное представление статистических данных используется все шире. Например, представление в электронном виде карты районов города с обозначением социальных учреждений, проживания категорий граждан, фиксация случаев пожара, правонарушений и т.д.

Средняя гармоническая

Рассчитывается, когда изучаемые показатели связаны между собой как x и1/x (показатели на единицу времени, сырья и т.д.).

Средняя гармоническая простая: Статистическая совокупность и статистический показатель - student2.ru .

Пример 6.4. Требуется вычислить среднюю производительность труда бригады из 3-х человек, если первому рабочему требуется для изготовления одной детали 1/4 часа, второму - 1/3 часа, третьему - 1/2 часа.

Статистическая совокупность и статистический показатель - student2.ru часа.

Средняя гармоническая взвешенная: Статистическая совокупность и статистический показатель - student2.ru .

Средняя геометрическая

Применяется, если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменным произведение индивидуальных величин.

Статистическая совокупность и статистический показатель - student2.ru .

Наиболее широкое применение этот вид средней получил в анализе динамики для определения среднего темпа роста.

Пример 6.5. В результате инфляции за первый год цена товара возросла в 2 раза к предыдущему году, а за 2-й год еще в 3 раза к уровню предыдущего года. Т.е. за 2 года цена выросла в 6 раз. Какой средний темп роста цены за год?

Если считать по средней арифметической, то Статистическая совокупность и статистический показатель - student2.ru раза, тогда за два года выросла бы в 2,5 · 2,5 = 6,25 раза, а не в 6 раз.

Средняя геометрическая дает правильный ответ: Статистическая совокупность и статистический показатель - student2.ru раза.

Средняя квадратическая

Применяется, если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходных величин.

Средняя квадратическая простая:

Статистическая совокупность и статистический показатель - student2.ru .

Пример 6.6. Имеется 3 участка земельной площади со сторонами квадрата: x1 = 100 м; x2 = 200 м; x3 = 300 м. Чему равна средняя площадь участков?

Общая площадь участков равна (100)2 + (200)2 + (300)2 = 140000 м2.

Если считать по средней арифметической, то Статистическая совокупность и статистический показатель - student2.ru м2, тогда общая площадь равна 3 · (200)2 = 120000 м2, что неверно.

Средняя квадратическая дает правильный ответ:

Статистическая совокупность и статистический показатель - student2.ru м2.

Средняя квадратическая взвешенная:

Статистическая совокупность и статистический показатель - student2.ru .

Средняя степенная

Обобщает все виды средних

Статистическая совокупность и статистический показатель - student2.ru .

Если k = -1, то это средняя гармоническая,

k = 0 – средняя геометрическая (после преобразований),

k = 1 – средняя арифметическая,

k = 2 – средняя квадратическая,

k = 3 – средняя кубическая.

Имеется следующее соотношение между формами средних величин:

Статистическая совокупность и статистический показатель - student2.ru

или

Статистическая совокупность и статистический показатель - student2.ru .

Пользуясь этим правилом статистика может управлять средними.

Пример 6.7. Студент на экзамене получил за 1-й вопрос оценку 2, за 2-ой вопрос – 5.

Статистическая совокупность и статистический показатель - student2.ru балла.

Статистическая совокупность и статистический показатель - student2.ru балла.

Статистическая совокупность и статистический показатель - student2.ru балла.

Исходя из полученных средних можно как «завалить» студента, так и «вытянуть».

Структурные характеристики

Если величина средней зависит от всех значений признака, встречаемых в данном распределении, то значение средней определяется структурой распределения, местом распределения.

Медиана – значение признака, приходящееся на середину ранжированной совокупности. Медиана делит совокупность на две равные части.

Пример. Вес 7 телят: 75, 80, 83, 87, 92, 97, 101 кг.

Медиана равна 87 кг (половина телят имеет вес меньше 87 кг, а половина – больше 87 кг).

Вес 8 телят: 75, 80, 83, 87, 92, 97, 101, 105 кг.

Медиана равна (87+92)/2=89,5 кг.

Медиана в интервальном ряду рассчитывается следующим образом:

Сначала исчисляют порядковый номер медианы по формуле Статистическая совокупность и статистический показатель - student2.ru и строят ряд накопленных частот Si=fi+Si-1 (S1=f1).

Накопленной частоте, которая равна порядковому номеру медианы или первая его превышает, соответствует медианный интервал. Медиана равна:

Статистическая совокупность и статистический показатель - student2.ru ,

где x0 – нижняя граница медианного интервала;

h – величина медианного интервала;

fi – частота i-го интервала;

Sме-1 – сумма накопленных частот в интервале, предшествующем медианному;

fMe – частота медианного интервала.

ПримерИмеются данные о заработной плате рабочих:

Месячная з/п, $ Количество рабочих, fi Накопленные частоты, Si
до 800
800 – 1000
1000 – 1200
1200 – 1400
1400 и более
Итого -

Статистическая совокупность и статистический показатель - student2.ru , следовательно, медианный интервал 1000-1200.

Статистическая совокупность и статистический показатель - student2.ru $ (половина рабочих имеет заработную плату ниже 1050$, а половина – выше 1050$).

Квартили – значения признака, делящие ранжированную совокупность на четыре равные по числу единиц части.

Номер квартильного интервала рассчитывается аналогично медианному в соотношении ¼ к совокупности. 1-й квартиль равен:

Статистическая совокупность и статистический показатель - student2.ru ,

xQ1 – нижняя граница интервала, содержащего нижний квартиль (интервал определяется по накопленной частоте, первой превышающей 25%),

h – величина интервала,

fQ1 – частота квартильного интервала,

SQ1-1 – сумма накопленных частот в интервале, предшествующего квартильному.

2-й квартиль:

Q2=Мe.

3-й квартиль:

Статистическая совокупность и статистический показатель - student2.ru ,

обозначения аналогичны 1-му квартилю с изменением на номер интервала.

Пример. По данным примера 6.9.

Статистическая совокупность и статистический показатель - student2.ru , следовательно, 1-й квартильный интервал 800-1000.

Статистическая совокупность и статистический показатель - student2.ru $ (25% рабочих получает заработную плату ниже 900$).

Статистическая совокупность и статистический показатель - student2.ru , следовательно, 3-й квартильный интервал 1000-1200.

Статистическая совокупность и статистический показатель - student2.ru $ (25% рабочих получает заработную плату выше 1175$).

Децили – значения признака, делящие ранжированную совокупность на десять равных по числу единиц частей.

Вычисляются они по той же схеме, что и медиана, и квартили. Обычно рассчитывают только первый и девятый децили:

Статистическая совокупность и статистический показатель - student2.ru ,

Статистическая совокупность и статистический показатель - student2.ru .

Пример. По данным примера 6.9.

Статистическая совокупность и статистический показатель - student2.ru , следовательно, 1-й децильный интервал до 800.

Статистическая совокупность и статистический показатель - student2.ru $ (10% рабочих получает заработную плату ниже 800$).

Статистическая совокупность и статистический показатель - student2.ru , следовательно, 9-й децильный интервал 1200-1400.

Статистическая совокупность и статистический показатель - student2.ru $ (10% рабочих получает заработную плату выше 1400$).

Децильный коэффициент Статистическая совокупность и статистический показатель - student2.ru . Широко применяется при изучении дифференциации доходов.

Пример.По данным примера 6.11.

Статистическая совокупность и статистический показатель - student2.ru (10% самых высокооплачиваемых работников получают зарплату в 1,75 раза больше 10% самых низкооплачиваемых работников).

Мода – значение признака, которое чаще других встречается в изучаемом ряду распределения.

Мода для дискретного ряда определяется как варианта, имеющая наибольшую частоту.

Для интервального ряда:

Статистическая совокупность и статистический показатель - student2.ru ,

где x0 –нижняя граница модального интервала,

d- величина модального интервала,

fMo-1 - частота интервала, предшествующего модальному,

fMo - частота модального интервала,

fMo+1 - частота интервала, следующего за модальным.

Пример. По данным примера 6.9.

Модальный интервал с наибольшей частотой fi = 4 равен 1000-1200.

Статистическая совокупность и статистический показатель - student2.ru $ (наибольшее число рабочих получает зарплату 1050$).

Показатели размера вариации

Вариация – изменение значения признака при переходе от одной единицы совокупности к другой.

Для измерения вариации используются следующие показатели.

1. Размах вариации – показывает, в каких пределах колеблется размер признака, образующего ряд распределения

R=xmax-xmin,

где xmax – максимальное значение признака,

xmin – минимальное значение признака.

2. Среднее линейное отклонение – показывает, на сколько в среднем отклоняются значения признака от его среднего значения.

По несгруппированным данным

Статистическая совокупность и статистический показатель - student2.ru .

По сгруппированным данным

Статистическая совокупность и статистический показатель - student2.ru ,

где k – число групп.

3. Дисперсия – средний квадрат отклонений индивидуальных значений признака от их средней величины.

По несгруппированным данным

Статистическая совокупность и статистический показатель - student2.ru .

По сгруппированным данным

Статистическая совокупность и статистический показатель - student2.ru .

Дисперсия имеет большое значение в статистическом анализе. Однако ее не всегда удобно использовать, потому что размерность дисперсии равна квадрату размерности изучаемого признака. Поэтому рассчитывают среднее квадратическое отклонение.

4. Среднее квадратическое отклонение – показывает, на сколько в среднем отклоняются значения признака от его среднего значения (обладает лучшими свойствами, чем среднее линейное отклонение).

По несгруппированным данным

Статистическая совокупность и статистический показатель - student2.ru .

По сгруппированным данным

Статистическая совокупность и статистический показатель - student2.ru .

Выражается в тех же единицах измерения, что и признак.

5. Коэффициент вариации – показывает степень интенсивности вариации, однородность совокупности.

Статистическая совокупность и статистический показатель - student2.ru

Совокупность считается однородной, если Статистическая совокупность и статистический показатель - student2.ru , где Vнорм – нормативная величина коэффициента вариации (для разных совокупностей может колебаться от 1% до 30%).

6. Линейный коэффициент вариации – отношение среднего линейного отклонения к средней.

Статистическая совокупность и статистический показатель - student2.ru

Пример. Распределение коров фермы по годовому удою молока.

Годовой удой молока от коровы, тыс. кг (xi) Число коров, fi Средняя величина признака xi*fi Статистическая совокупность и статистический показатель - student2.ru Статистическая совокупность и статистический показатель - student2.ru Статистическая совокупность и статистический показатель - student2.ru Статистическая совокупность и статистический показатель - student2.ru
до 2 1,5 -1,3 5,2 1,69 6,76
2-3 2,5 -0,3 0,6 0,09 0,18
3-4 3,5 +0,7 1,4 0,49 0,98
4-5 4,5 4,5 +1,7 1,7 2,89 2,89
5 и более 5,5 5,5 +2,7 2,7 7,29 7,29
Итого     11,6   18,1

1) Средняя арифметическая Статистическая совокупность и статистический показатель - student2.ru тыс. кг.

2) Размах вариации R = 6 – 1 = 5 тыс. кг.

3) Среднее линейное отклонение Статистическая совокупность и статистический показатель - student2.ru тыс. кг.

4) Дисперсия Статистическая совокупность и статистический показатель - student2.ru тыс. кг2.

5) Среднее квадратическое отклонение Статистическая совокупность и статистический показатель - student2.ru Статистическая совокупность и статистический показатель - student2.ru тыс. кг.

6) Коэффициент вариации Статистическая совокупность и статистический показатель - student2.ru - совокупность неоднородна.

7) Линейный коэффициент вариации Статистическая совокупность и статистический показатель - student2.ru .

Показатели вариации альтернативного признака.

Доля вариантов обладающих изучаемым признаком обозначается р, а доля вариантов не обладающих изучаемым признаком – q=1-p.

Средняя величина: Статистическая совокупность и статистический показатель - student2.ru .

Дисперсия: Статистическая совокупность и статистический показатель - student2.ru .

Пример. Совокупность новорождённых – 205 чел., девочки – 100 чел.

Доля девочек р = 100/205=0,488,

Доля мальчиков q = 105/205=0,512,

Дисперсия σ2 = 0,488*0,512= 0,2498

Виды и схемы отбора

Размер ошибки выборки и методы ее определения зависят от вида и схемы отбора.

Различают четыре вида отбора совокупности единиц наблюдения:

1. случайный;

2. механический;

3. типический;

4. серийный (гнездовой).

Случайный отбор. В случай­ном порядке отбирается необходимое количество единиц совокупнос­ти. Каждая из единиц имеет одинаковую вероятность попасть в выборку. Наиболее распространенный вид отбора.

Пример1. Тиражи выигрышей: из общего количества выпущенных билетов в случайном поряд­ке наугад отбирается определенная часть номеров, на которые прихо­дятся выигрыши. При этом всем номерам обеспечивается равная воз­можность попасть в выборку.

Механический отбор. Все единицы изучаемой совокупности предварительно располагаются в определенном порядке – например, по алфавиту, местоположению и т. п., а потом, в зависимости от объ­ема выборки, механически, через определенный интервал, отбирается необходимое количество единиц.

Пример.2. 10%-ная ме­ханическая выборка студентов. Составляется список их фамилий по алфавиту и механически отбирается каждый десятый студент, напри­мер: 1-й, 11-й, 21-й, 31-й или 7-й, 17-й, 27-й, 37-й и т. д. Если выборка 5%-ная, то отбирается каждый 20-й студент, т.е. интервал зависит от объема выборки. Чем меньше выборка, тем больше интервал.

Типический отбор. Изучаемая совокупность разбивается по су­щественному, типическому признаку на качественно однородные, од­нотипные группы. Затем из каждой группы случайным способом отби­рается количество единиц, пропорциональное удельному весу группы во всей совокупности.

Пример 3. Типический отбор 1500 студентов из 10000, обучающихся на четырех факультетах института. Для этого их группируют в однородные группы по факультетам, а затем по каж­дой из них отбирают число студентов пропорционально удельному весу числа студентов института по факультетам.

Типический отбор дает более точные результаты, чем случайный или механический, потому что при нем в выборку в такой же пропор­ции, как и в генеральной совокупности, попадают представители всех типических групп.

Серийный (гнездовой) отбор. Отбору подлежат не отдельные еди­ницы совокупности, а целые группы (серии, гнезда), отобранные слу­чайным или механическим способом. В каждой такой группе, серии проводится сплошное наблюдение, а результаты переносятся на всю совокупность.

Пример 4. 10 тыс. студентов института занимаются группами по 25 человек. Для проведения 15%-ного выборочного наблюдения се­рийным (гнездовым) способом необходимо в случайном порядке ото­брать 60 групп (1500/25 = 60) из 400 (10 000/25 = 400) и результаты наблюдения перенести на всю совокупность.

Выборка проводится по схеме повторного или бесповторного отбора.

Повторный отбор. Каждая отобранная единица или серия воз­вращается во всю совокупность и может вновь попасть в выборку. Так называемая схема возвращенного шара.

Бесповторный отбор. Каждая обследованная единица изымается и не возвращается в совокупность, поэтому она не попадает в повторное обследование. Схема невозвращенного шара.

Бесповторный отбор дает более точные результаты по сравнению с повторным, так как при одном и том же объеме выборки наблюдение охватывает большее количество единиц изучаемой совокупности.

В социально-экономической статистике нет смысла применять повторную выборку, поэтому, как правило проводится бесповторный отбор.

Основные характеристики параметров генеральной и выборочной совокупностей обозначаются символами:

Показатели Генеральная совокупность Выборочная совокупность
Объем совокупности N n
Средняя величина Статистическая совокупность и статистический показатель - student2.ru Статистическая совокупность и статистический показатель - student2.ru
Доля p w
Дисперсия Статистическая совокупность и статистический показатель - student2.ru Статистическая совокупность и статистический показатель - student2.ru

Ошибка выборки

Научным обоснованием случайных ошибок выборки являются тео­рия вероятностей и ее предельные теоремы. Применительно к выбороч­ному наблюдению пользуются теоремами русских математиков П.Л.Чебышева и A.M. Лягунова. Согласно этим теоремам с увеличением чис­ленности выборки размеры случайных ошибок сокращаются.

Различают сред­нюю и предельную ошибку выборки.

Средняя ошибка – такое расхождение между средними выборочной и генеральной совокупнос­тями ( Статистическая совокупность и статистический показатель - student2.ru ), которое не превышает Статистическая совокупность и статистический показатель - student2.ru .

Средняя ошибка выборочной средней равна

Статистическая совокупность и статистический показатель - student2.ru ,

где σ – среднее квадратическое отклонение признака, n – объем выборочной совокупности.

Доказано, что между Статистическая совокупность и статистический показатель - student2.ru и Статистическая совокупность и статистический показатель - student2.ru есть следующее соотношение

Статистическая совокупность и статистический показатель - student2.ru

или

Статистическая совокупность и статистический показатель - student2.ru .

Предельная ошибка – максимально возможное расхождение этих средних, т.е. мак­симум ошибки при заданной вероятности ее появления.

Предельная ошибка выборочной средней равна

Статистическая совокупность и статистический показатель - student2.ru ,

где t – нормированное отклонение, определяется по таблицам t-критерия Стьюдента исходя из числа наблюдений (n) и доверительной вероятности (90%, 95%, 99%).

При числе наблюдений более 200 для доверительной вероятности 90% t=1,645; 95% - 1,96; 99% - 2,576.

Отсюда предельные значения генеральной средней определяются как

Статистическая совокупность и статистический показатель - student2.ru .

Это означает, что с заданной вероятностью значение генеральной средней будет находиться указанных в пределах.

Пример. Для определения скорости расчетов с кредиторами предприятия была проведена случайная выборка 50 платежных документов, по которым средний срок перечисления денег оказался равен 28,2 дня со стандартным отклонением 5,4 дня. Определить средний срок прохождения всех платежей в течение данного года с доверительной вероятностью 0,95.

Скорректированная дисперсия равна

Статистическая совокупность и статистический показатель - student2.ru .

Средняя ошибка выборочной средней равна

Статистическая совокупность и статистический показатель - student2.ru дня.

Значение нормированного отклонения для доверительной вероятности 0,95 равно 1,96. Тогда, предельная ошибка выборочной средней равна

Статистическая совокупность и статистический показатель - student2.ru дня.

Предельные значения X

Статистическая совокупность и статистический показатель - student2.ru

Статистическая совокупность и статистический показатель - student2.ru дня.

Таким образом, с вероятностью 95% средняя продолжительность расчетов предприятия с кредиторами составляет не менее 26,69 дня и не более 29,71 дня.

Ошибка выборки для выборочной относительной величины (доли) определяется аналогично. Дисперсия относительной величины

Статистическая совокупность и статистический показатель - student2.ru ,

где p – доля тех или иных единиц в выборке.

Среде значение переменной

Статистическая совокупность и статистический показатель - student2.ru .

Средняя ошибка выборочной доли

Статистическая совокупность и статистический показатель - student2.ru

Предельная ошибка выборочной доли

Статистическая совокупность и статистический показатель - student2.ru .

Пример . По данным выборочного изучения 100 платежных документов предприятия оказалось, что в шести случаях сроки расчетов с кредиторами были превышены. Требуется установить доверительный интервал доли платежных документов предприятия без нарушения сроков с вероятностью 0,95.

Доля документов без нарушения сроков

Статистическая совокупность и статистический показатель - student2.ru .

Средняя ошибка выборочной доли

Статистическая совокупность и статистический показатель - student2.ru .

Предельная ошибка выборочной доли

Статистическая совокупность и статистический показатель - student2.ru .

Доверительный интервал

Статистическая совокупность и статистический показатель - student2.ru

Статистическая совокупность и статистический показатель - student2.ru или Статистическая совокупность и статистический показатель - student2.ru .

Определение объема выборки

Объем выборки рассчитывается на стадии проектирования выборочного обследования. Для повторного отбора объем выборки равен

Статистическая совокупность и статистический показатель - student2.ru ,

где Δ – допустимая погрешность, которая задается исследователем исходя из требуемой точности ре

Наши рекомендации