Метод статистической группировки, его задачи. Виды группировок, их применение в анализе финансово-экономической деятельности предприятия.

В сводке статистического материала отдельные единицы статистической совокупности объединяются в группы при помощи метода группировок. Статистическая группировка – это процесс образования однородных групп на основе расчленения статистической совокупности на части или объединения изучаемых единиц в частные совокупности по существенным для них признакам, каждая из которых характеризуется системой статистических показателей. Особым видом группировок является классификация, представляющая собой устойчивую номенклатуру классов и групп, образованных на основе сходства и различия единиц изучаемого объекта. Метод группировок применяется для решения задач, возникающих в ходе научного статистического исследования. К таким задачам относятся: выделение социально-экономических типов явлений; изучение структуры явления и структурных сдвигов, происходящих в нем; изучение связей и зависимостей между отдельными признаками явления. Для решения этих задач применяются (соответственно) три вида группировок: типологические, структурные и аналитические (факторные). Типологическая группировка решает задачу выявления и характеристики социально-экономических типов путем разделения качественно разнородной совокупности на классы, социально-экономические типы, однородные группы единиц в соответствии с правилами научной группировки. Признаки, по которым производится распределение единиц изучаемой совокупности на группы, называются группировочными признаками, или основанием группировки. Выделить типичное можно не по любому признаку, а только по определенному, который должен изменяться в зависимости от условий места и времени. Структурной группировкой называется группировка, в которой происходит разделение выделенных с помощью типологической группировки типов явления, однородных совокупностей на группы, характеризующие их структуру по какому-либо варьирующему признаку. К структурным относится группировка населения по размеру дохода, группировка хозяйства по объему продукции и т.д. Анализ структурных группировок, взятых за ряд периодов или моментов времени, показывает изменение структуры изучаемых явлений, т.е. структурные сдвиги. Аналитические (факторные) группировки, в частности, исследуют связи и зависимости между изучаемыми явлениями и их признаками. В основе аналитической группировки лежит факторный признак и каждая выделенная группа характеризуется средними значениями результативного признаки. В зависимости от степени сложности массового явления и от задач анализа группировки могут проводиться по одному или нескольким признакам. Если группы образуются по одному признаку, группировка называется простой. Группировка по двум или нескольким признакам называется сложной. Если группы, образованные по одному признаку, делятся на подгруппы по второму, а последние – на подгруппы по третьему и т.д. признакам, т.е. в основании группировки лежит несколько признаков, взятых в комбинации, то такая группировка называется комбинационной. При составлении структурных группировок на основе варьирующих количественных признаков необходимо определить количество групп и интервалы группировки. При определении количества групп необходимо стремиться к тому, чтобы были учтены особенности изучаемого явления. Число групп должно быть оптимальным, в каждую группу должно входить достаточно большое число единиц совокупности, что отвечает требованию закона больших чисел. Интервал – количественное значение, отделяющее одну единицу (группу) от другой. Т.е. интервал очерчивает количественные границы групп. Интервалы могут быть равными и неравными. Неравные интервалы применяются, когда интервалы изменяются прогрессивно (прогрессивно убывающие, прогрессивно возрастающие). Группировка с равными интервалами целесообразны в тех случаях, когда вариация проявляется в сравнительно узких границах и распределение является практически равномерным. Для группировок с равными интервалами величина интервала будет равна: i = (Xmax - Xmin)/n, где Xmax, Xmin – наибольшее и наименьшее значения признака, n – число групп.



Наши рекомендации