Пространственная система сходящихся сил

Пространственная система сходящихся сил

Система сил, линии действия которых расположены в различных плоскостях, называется пространственной системой сил.

Пространственная система сил называется сходящейся, если линии действия всех сил системы пересекаются в одной точке.

Теорема: пространственная система сходящихся сил эквивалентна равнодействующей, которая равна векторной сумме этих сил; линия действия равнодействующей проходит через точку пересечения линий действия составляющих сил.

Пусть дана пространственная система n сходящихся сил (F1, F2, F3,....Fn). На основании следствия из аксиом III и IV перенесем все силы системы вдоль линий действия в точку их пересечения. Затем на основании аксиомы параллелограмма последовательно сложим все силы и получим их равнодействующую:

FΣ = F1 + F2 + F3 + ....+ Fn, или FΣ = ΣFi.

Силовой многоугольник пространственной системы сил не лежит в одной плоскости, поэтому геометрический и графический способы нахождения равнодействующей пространственной системы сходящихся сил неприемлемы, а применяется только аналитический способ (метод проекций).

Проекция силы на ось в пространстве находится по проецирующим перпендикулярам, и может быть определена при помощи тригонометрических функций. При определении проекций сил пространственной системы потребуется система координат с осями X, Y, Z, поскольку силы системы не располагаются в одной плоскости.

Правило знаков для проекций будет таким же, как и для плоской системы сил – совпадающие по направлению с координатной осью силы считаются положительными, в противном случае – отрицательными. Если вектор силы параллелен какой-либо оси координат, то он проецируется на эту ось в натуральную величину, если же вектор перпендикулярен оси, его проекция на эту ось будет равна нулю.

***

Аналитические условия равновесия пространственной системы сходящихся сил

Известно, что пространственная система сходящихся сил эквивалентна равнодействующей. Если такая система сил находится в равновесии, т. е. эквивалентна нулю, то можно сделать вывод, что равнодействующая этой системы равна нулю, а следовательно, и проекции равнодействующей тоже равны нулю, причем эти проекции равны сумме проекций составляющих.
Отсюда вытекают условия равновесия пространственной системы сходящихся сил:

ΣX = 0; ΣY = 0; ΣZ = 0.

Эти условия формируются следующим образом: для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы алгебраическая сумма проекций всех сил на каждую их трех координатных осей равнялась нулю.

***



Примеры решения задач

ПРИМЕР 1

Задание Два шара массами 3 и 5 кг скреплены стержнем, масса которого 2 кг. Определить положение общего центра масс системы, если радиус первого шара 5 см, радиус второго шара 7 см, а длина стержня 30 см.
Решение Выполним рисунок. Пространственная система сходящихся сил - student2.ru Запишем условие равновесия системы относительно оси, проходящей через ее центр масс Моменты, созданные силами тяжести:Подставим значения моментов в условие равновесия:Переведем единицы в систему СИ: см м; см м. Пространственная система сходящихся сил - student2.ru Вычислим:  
Ответ Центр тяжести системы находится на расстоянии 5 см от середины стержня в сторону большего шара.

Пространственная система сходящихся сил - student2.ru

Пространственная система сходящихся сил - student2.ru

ВЕРНУТЬСЯ Пространственная система сходящихся сил - student2.ru Сложное движение точки (тела) – такое движение, при котором точка (тело) одновременно участвует в нескольких движениях (напр. пассажир, перемещающийся по движущемуся вагону). В этом случае вводится подвижная система координат (Oxyz), которая совершает заданное движение относительно неподвижной (основной) системы координат (O1x1y1z1). Абсолютным движением точки назыв. движение по отношению к неподвижной системе координат. Относительное движение – движение по отношению к подвижной системе коорд. (движение по вагону). Переносное движение – движение подвижной сист. координат относительно неподвижной (движение вагона). Теорема о сложении скоростей: Пространственная система сходящихся сил - student2.ru , Пространственная система сходящихся сил - student2.ru ; Пространственная система сходящихся сил - student2.ru -орты (единичные вектора) подвижной системы координат, орт вращается вокруг мгновенной оси, поэтому скорость его конца Пространственная система сходящихся сил - student2.ru и т.д., Þ: Пространственная система сходящихся сил - student2.ru , Пространственная система сходящихся сил - student2.ru ; Пространственная система сходящихся сил - student2.ru – относительная скорость. Пространственная система сходящихся сил - student2.ru ; переносная скорость: Пространственная система сходящихся сил - student2.ru , поэтому абсолютная скорость точки = геометрической сумме ее переносной (ve) и относительной (vr) скоростей Пространственная система сходящихся сил - student2.ru , модуль: Пространственная система сходящихся сил - student2.ru . Теорема о сложении ускорений (теорема Кориолиса): Пространственная система сходящихся сил - student2.ru Пространственная система сходящихся сил - student2.ru и т.д. Слагаемые выражения, определяющего ускорения Пространственная система сходящихся сил - student2.ru : 1) Пространственная система сходящихся сил - student2.ru – ускорение полюса О; 2) Пространственная система сходящихся сил - student2.ru 3) Пространственная система сходящихся сил - student2.ru – относительное ускорение точки; 4) Пространственная система сходящихся сил - student2.ru , получаем: Пространственная система сходящихся сил - student2.ru . Пространственная система сходящихся сил - student2.ru Первые три слагаемых представляют собой ускорение точки в переносном движении: Пространственная система сходящихся сил - student2.ru – ускорение полюса О; Пространственная система сходящихся сил - student2.ru – вращательное уск., Пространственная система сходящихся сил - student2.ru – осестремительное уск., т.е. Пространственная система сходящихся сил - student2.ru . Теорема о сложении ускорений (теорема Кориолиса): Пространственная система сходящихся сил - student2.ru , где Пространственная система сходящихся сил - student2.ru – ускорение Кориолиса (кориолисово ускорение) – в случае непоступательного переносного движения абсолютное ускорение = геометрической сумме переносного, относительного и кориолисова ускорений. Кориолисово ускорение характеризует: 1) изменение модуля и направления переносной скорости точки из-за ее относительного движения; 2) изменение направления относительной скорости точки из-за вращательного переносного движения. Модуль ускорения Кориолиса: ас= 2×|we×vr|×sin(we^vr), направление вектора Пространственная система сходящихся сил - student2.ru определяется по правилу векторного произведения, или по правилу Жуковского: проекцию относительной скорости на плоскость, перпендикулярную переносной угловой скорости, надо повернуть на 90о в направлении вращения. Пространственная система сходящихся сил - student2.ru Кориолисово уск. = 0 в трех случаях: 1) we=0, т.е. в случае поступательного переносного движения или в момент обращения угл. скорости в 0; 2) vr=0; 3) sin(we^vr)=0, т.е. Ð(we^vr)=0, когда относительная скорость vr параллельна оси переносного вращения. В случае движения в одной плоскости – угол между vr и вектором we = 90о, sin90o=1, ас=2×we×vr. Сложное движение твердого тела Пространственная система сходящихся сил - student2.ru При сложении двух поступательных движений результирующее движение также является поступательным и скорость результирующего движения равна сумме скоростей составляющих движений. Сложение вращений тв. тела вокруг пересекающихся осей. Ось вращения, положение которой в пространстве изменяется со временем назыв. мгновенной осью вращения тела. Вектор угловой скорости – скользящий вектор, направленный вдоль мгновенной оси вращения. Абсолютная угловая скорость тела = геометрической сумме скоростей составляющих вращений – правило параллелограмма угловых скоростей. Пространственная система сходящихся сил - student2.ru Пространственная система сходящихся сил - student2.ru . Если тело участвует одновременно в мгновенных вращениях вокруг нескольких осей, пересекающихся в одной точке, то Пространственная система сходящихся сил - student2.ru . При сферическом движении твердого тела, одна из точек которого во все время движения остается неподвижной, имеем уравнения сферического движения: Y=f1(t); q=f2(t); j=f3(t). Y – угол прецессии, q – угол нутации, j – угол собственного вращения — углы Эйлера. Угловая скорость прецессии Пространственная система сходящихся сил - student2.ru , угл. скорость нутации Пространственная система сходящихся сил - student2.ru , угл. ск. собственного вращения Пространственная система сходящихся сил - student2.ru . Пространственная система сходящихся сил - student2.ru , Пространственная система сходящихся сил - student2.ru – модуль угловой скорости тела вокруг мгновенной оси. Через проекции на неподвижные оси координат: Пространственная система сходящихся сил - student2.ru – кинематические уравнения Эйлера. Сложение вращений вокруг 2-х параллельных осей. 1) Пространственная система сходящихся сил - student2.ru Вращения направлены в одну сторону. w=w2+w1, С – мгновенный центр скоростей и через нее проходит мгновенная ось вращения, Пространственная система сходящихся сил - student2.ru , Пространственная система сходящихся сил - student2.ru . 2) Вращения направлены в разные стороны. Пространственная система сходящихся сил - student2.ru , w=w2—w1 Пространственная система сходящихся сил - student2.ru Пространственная система сходящихся сил - student2.ru Пространственная система сходящихся сил - student2.ru С – мгн. центр ск. и мгн. ось вращения, Пространственная система сходящихся сил - student2.ru . Векторы угловых скоростей при вращении вокруг ||-ых осей складываются так же, как векторы параллельных сил. 3) Пара вращений – вращения вокруг ||-ных осей направлены в разные стороны и угловые скорости по модулю равны ( Пространственная система сходящихся сил - student2.ru – пара угловых скоростей). В этом случае vA=vB, результирующее движение тела – поступательное ( или мгновенное поступательное) движение со скоростью v=w1×AB – момент пары угловых скоростей (поступательное движение педали велосипеда относит-но рамы). Мгн. центр скоростей находится в бесконечности. Сложение поступательного и вращательного движений. 1) Скорость поступательного движения ^ к оси вращения – плоскопараллельное движение – мгновенное вращение вокруг оси Рр с угловой скоростью w=w'. 2) Винтовое движение – движение тела слагается из вращательного движения вокруг оси Аа с угл.ск. w и поступательного со скоростью v||Аа. Ось Аа – ось винта. Если v и w в одну сторону, то винт – правый, если в разные – левый. Расстояние, проходимое за время одного оборота любой точкой тела, лежащей на оси винта, наз. шагом винта – h. Если v и w постоянны, то h= Пространственная система сходящихся сил - student2.ru =const, при постоянном шаге любая (×)М, не лежащая на оси винта описывает винтовую линию. Пространственная система сходящихся сил - student2.ru направлена по касательной к винтовой линии. 3) Скорость поступательного движения образует произвольный угол с осью вращения, в этом случае движение можно рассматривать как слагающееся из серии мгновенных винтовых движений, вокруг непрерывно изменяющихся винтовых осей – мгновенно–винтовое движение.


Иметь представление о свободных и несвободных материаль­ных точках, о силах инерции, об использовании силы инерции для решения технических задач.

Знать формулы для расчета силы инерции при поступатель­ном и вращательном движениях, знать принцип Даламбера и уметь определять параметры движения с использованием законов динамики и метода кинетостатики.

Сила инерции

Инертность — способность сохранять свое состояние неизмен­ным, это внутреннее свойство всех материальных тел.

Сила инерции — сила, возникающая при разгоне или торможе­нии тела (материальной точки) и направленная в обратную сторо­ну от ускорения. Силу инерции можно измерить, она приложена к «связям» — телам, связанным с разгоняющимся или тормозящимся телом.

Рассчитано, что сила инерции равна

Пространственная система сходящихся сил - student2.ru

Пространственная система сходящихся сил - student2.ru

Разгоняющееся тело (плат­форма с массой т) силу инерции не воспринимает, иначе разгон платформы вооб­ще был бы невозможен.

При вращательном движении (криволинейном) возникающее ускорение принято представлять в виде двух составляющих: нор­мального an и касательного at .

Поэтому при рассмотрении кри­волинейного движения могут воз­никнуть две составляющие силы инерции: нормальная и касательная a = at + ап;

Пространственная система сходящихся сил - student2.ru

Пространственная система сходящихся сил - student2.ru

Пространственная система сходящихся сил - student2.ru

При равномерном движении по дуге всегда возникает нормаль­ное ускорение, касательное ускорение равно нулю, поэтому действует только нормальная составляющая силы инерции, направленная по радиусу из центра дуги.

ω =const;

Пространственная система сходящихся сил - student2.ru

Принцип кинетостатики (принцип Даламбера)

Принцип кинетостатики используют для упрощения решения ряда технических задач.

Реально силы инерции приложены к телам, связанным с разго­няющимся телом (к связям).

Даламбер предложил условно прикладывать силу инерции к ак­тивно разгоняющемуся телу. Тогда система сил, приложенных к ма­териальной точке, становится уравновешенной, и можно при реше­нии задач динамики использовать уравнения статики.

Принцип Даламбера:

Материальная точка под действием активных сил, реакций связей и условно приложенной силы инерции находится в равнове­сии:

Пространственная система сходящихся сил - student2.ru

Рис.9.3. Коническая фрикционная передача

2. По взаимному расположению осей валов:

- цилиндрические или конусные с параллельными осями (рис.9.1, 9.2);

- конические с пересекающимися осями (рис.9.3).

3. В зависимости от условий работы:

- открытые (работают всухую);

- закрытые (работают в масляной ванне).

В открытых фрикционных передачах коэффициент трения Пространственная система сходящихся сил - student2.ru выше, прижимное усилие катков Fn меньше. В закрытых фрикционных передачах масляная ванна обеспечивает хороший отвод тепла, делает скольжение менее опасным, увеличивает долговечность передачи.

4. По принципу действия:

- нереверсивные (рис.9.1-9.3);

- реверсивные.

5. Различают также передачи с постоянным или автоматическим регулируемым прижатием катков, с промежуточным (паразитным) фрикционным элементом или без него.

Достоинства фрикционных передач:

- простота конструкции и обслуживания;

- плавность передачи движения и регулирования скорости и бесшумность работы;

- большие кинематические возможности (преобразование вращатель­ного движения в поступательное, бесступенчатое изменение скоро­сти, возможность реверсирования на ходу, включение и выключение передачи на ходу без остановки);

- за счет возможностей пробуксовки передача обладает предохрани­тельными свойствами. Однако после пробуксовки передача, как пра­вило, резко ухудшает свои качества - появляются лыски на катках, неравномерно срабатываются фрикционные поверхности и т.д. По­этому использовать пробуксовку как предохранительное средство не рекомендуется;

- отсутствие мёртвого хода при реверсе передачи;

- равномерность вращения, что удобно для приборов;

- возможность бесступенчатого регулирования передаточного числа, причем на ходу, без остановки передачи.

Недостатки фрикционных передач:

- непостоянство передаточного числа из-за проскальзывания;

- незначительная передаваемая мощность (открытые передачи - до 10-20 кВт; закрытые - до 200-300 кВт);

- для открытых передач сравнительно низкий КПД;

- большое и неравномерное изнашивание катков при буксовании;

- необходимость применения опор валов специальной конструкции с прижимными устройствами (это делает передачу громоздкой);

- для силовых открытых передач незначительная окружная скорость ( Пространственная система сходящихся сил - student2.ru 7 - 10 м/с);

- большие нагрузки на валы и подшипники от прижимной силы Пространственная система сходящихся сил - student2.ru , что увеличивает их размеры и делает передачу громоздкой. Этот недостаток ограничивает величину передаваемой мощности;

- большие потери на трение.

Применение.

Фрикционные передачи с нерегулируемым передаточным числом в машиностроении применяются сравнительно редко, например, во фрикционных прессах, молотах, лебедках, буровой технике и т.п.). В качестве силовых передач они громоздки и малонадежны. Эти передачи применяются преимущественно в приборах, где требуется плавность и бесшумность работы (магнитофоны, проигрыва­тели, спидометры и т. п.). Они уступают зубчатым передачам в несущей способности. Зато фрикционные передачи с бесступенчатым регулированием скорости – вариаторы – широко применяются в различных машинах, например, в металлорежущих станках, в текстильных и транспортирующих машинах и т. д. Зубчатые передачи не позволяют такого регулирования. На практике широко применяют реверсивные фрикционные передачи винтовых прессов, передачи колесо — рельс и колесо — дорожное полотно самоходного транспорта. Фрикционные передачи предназначены для мощностей, не превышающих 20 кВт, окружная скорость катков допускается до 25 м/с.

Рис.9.4. Геометрические параметры фрикционных передач

Передаточное число.

Если допустить, что во фрикционной передаче скольжение отсутствует, то окружные скорости катков бу­дут равны, т. е. Пространственная система сходящихся сил - student2.ru . Для передачи, пока­занной на рис.1:

Пространственная система сходящихся сил - student2.ru ; Пространственная система сходящихся сил - student2.ru .

Приравнивая правые части равенств, по­лучим Пространственная система сходящихся сил - student2.ru или Пространственная система сходящихся сил - student2.ru . Отсюда

Пространственная система сходящихся сил - student2.ru ,

где Пространственная система сходящихся сил - student2.ru — передаточное число.

В действительности скольжение между катками есть, т. е. Пространственная система сходящихся сил - student2.ru . Величина скольжения оценивается коэффициентом скольжения Пространственная система сходящихся сил - student2.ru ; Пространственная система сходящихся сил - student2.ru = 0,005 ÷ 0,03 (здесь Пространственная система сходящихся сил - student2.ru — теоретическая угловая скорость).

Передаточное отношение фрикционной передачи с учетом скольжения

Пространственная система сходящихся сил - student2.ru

Для передачи движения между валами с пересекающимися осями используют коническую фрикционную передачу. Угол Пространственная система сходящихся сил - student2.ru между осями валов обычно составляет 900. В этом случае передаточное отношениебез учета скольжения

Пространственная система сходящихся сил - student2.ru .

КПДфрикционных передач зависит от следующих потерь:

- связанных с использованием катков, имеющих формы, не позволяю­щие им перекатываться один по другому без проскальзывания; это отчетливо видно, например, в передаче с клиновыми катками и лобовом вариаторе;

- проскальзывания, обусловленного масляной пленкой на рабочих по­верхностях и т. д.;

- трения качения, вызванного деформацией поверхностей катков в зоне контакта;

- в подшипниках. Потери в подшипниках зависят от величины нагрузки на валы, которая определяется прижимным усилием F Пространственная система сходящихся сил - student2.ru .

КПД фрикционной передачи определяют по формуле

Пространственная система сходящихся сил - student2.ru

где Пространственная система сходящихся сил - student2.ru — сумма относительных потерь.

Для закрытых фрикционных передач Пространственная система сходящихся сил - student2.ru = 0,88 – 0,93, для открытых Пространственная система сходящихся сил - student2.ru = 0,68 – 0,86.

Рис.9.5. Катки клинчатой передачи

Пространственная система сходящихся сил - student2.ru

а) б) в)

Рис.9.6. Типы катков: a — гладкие катки:

б — выпуклые катки: в — выпукло-вогнутые катки

Геометрические параметры передачи (см. рис. 9.4).

Межосевое расстояние

Пространственная система сходящихся сил - student2.ru .

Диаметр ведущего катка

Пространственная система сходящихся сил - student2.ru .

Диаметр ведомого катка

Пространственная система сходящихся сил - student2.ru .

Рабочая ширина обода катка

Пространственная система сходящихся сил - student2.ru ,

где Пространственная система сходящихся сил - student2.ru = 0,2 - 0,4 — коэффициент ширины обода катка по межосевому рас­стоянию.

Для компенсации неточности монтажа на практике ширину малого катка (см. рис.9.1) принимают, мм:

Пространственная система сходящихся сил - student2.ru .

Силы в передаче.

Для обеспечения работоспособности фрикционных передач необходи­мо прижать катки (см. рис.9.4) силой нажатия Пространственная система сходящихся сил - student2.ru таким образом, чтобы со­блюдалось условие (1), т. е.

Пространственная система сходящихся сил - student2.ru

где Пространственная система сходящихся сил - student2.ru — максимальная сила трения; Пространственная система сходящихся сил - student2.ru — передаваемая окружная сила; Пространственная система сходящихся сил - student2.ru — коэффициент трения (выбирается по табл.1). Отсюда сила нажатия Пространственная система сходящихся сил - student2.ru или

Пространственная система сходящихся сил - student2.ru , (2)

где Пространственная система сходящихся сил - student2.ru — коэффициент запаса сцепления; вводится для предупреждения пробуксовки от перегрузок в период пуска передачи (для силовых передач Пространственная система сходящихся сил - student2.ru = 1,25 - 1,5; для передач приборов Пространственная система сходящихся сил - student2.ru = 3 - 5).

По схеме, показанной на рис.9.4,

Пространственная система сходящихся сил - student2.ru . (3)

Подставив формулу (3) в формулу (2), определим силу нажатия

Пространственная система сходящихся сил - student2.ru .

На практике применяют два способа прижатия катков: постоянной силойи автоматическое. Постоянная по значению прижимная сила катков допустима при передаче постоянной нагрузки. При переменной нагрузке прижатие катков должно изменяться автоматически — пропорционально изменению передаваемого вращающего момента. В этом случае снижаются потери на трение, повышается долговечность передачи.

В первом случае сила прижатия, осуществляемая обычно с помощью пружин, в процессе paботы изменена быть не может; во втором случае сила прижатия изменяется с изменением нагрузки, что положительно, сказывается на качественных характеристиках передачи. Однако применение специальных нажимных устройств (например, шариковое самозатягивающее устройство) усложняет конструкцию.

Один каток к другому может быть прижат:

- предварительно затянутыми пружинами (в передачах, предназначен­ных для работы при небольших нагрузках);

- гидроцилиндрами (при передаче больших нагрузок);

- собственной массой машины или узла;

- через систему рычагов с помощью перечисленных выше средств;

- центробежной силой (в случае сложного движения катков в плане­тарных системах).

Пространственная система сходящихся сил

Система сил, линии действия которых расположены в различных плоскостях, называется пространственной системой сил.

Пространственная система сил называется сходящейся, если линии действия всех сил системы пересекаются в одной точке.

Теорема: пространственная система сходящихся сил эквивалентна равнодействующей, которая равна векторной сумме этих сил; линия действия равнодействующей проходит через точку пересечения линий действия составляющих сил.

Пусть дана пространственная система n сходящихся сил (F1, F2, F3,....Fn). На основании следствия из аксиом III и IV перенесем все силы системы вдоль линий действия в точку их пересечения. Затем на основании аксиомы параллелограмма последовательно сложим все силы и получим их равнодействующую:

FΣ = F1 + F2 + F3 + ....+ Fn, или FΣ = ΣFi.

Силовой многоугольник пространственной системы сил не лежит в одной плоскости, поэтому геометрический и графический способы нахождения равнодействующей пространственной системы сходящихся сил неприемлемы, а применяется только аналитический способ (метод проекций).

Проекция силы на ось в пространстве находится по проецирующим перпендикулярам, и может быть определена при помощи тригонометрических функций. При определении проекций сил пространственной системы потребуется система координат с осями X, Y, Z, поскольку силы системы не располагаются в одной плоскости.

Правило знаков для проекций будет таким же, как и для плоской системы сил – совпадающие по направлению с координатной осью силы считаются положительными, в противном случае – отрицательными. Если вектор силы параллелен какой-либо оси координат, то он проецируется на эту ось в натуральную величину, если же вектор перпендикулярен оси, его проекция на эту ось будет равна нулю.

***

Наши рекомендации