Графическое представление результатов экспериментов

В большинстве случаев экспериментального изучения различных физических явлений целесообразно представить полученные зависимости в виде графика.

Как оценить, согласуются ли результаты опыта с ожидаемой величиной, получаемой из зависимости между измеряемыми величинами? Наглядное представление об этом получают, сопоставляя теоретическую кривую и найденные экспериментально точки. Особенно удобно проверить, ложатся ли данные точки на прямую. Поэтому при построении графиков желательно выбирать такие координаты, чтобы ожидаемая зависимость была линейной.

Например, при определении ускорения свободного падения из соотношения h= gt2/2 между высотой и временем падения удобно строить график координатах (t2, h). Тогда g= 2 tg α, т. е. определяется по всей совокупности результатов измерений t и h [по наклону прямой h(t2)].

Экспериментальные точки на графике представляют в виде крестиков, размах по высоте и ширине которых равен удвоенным погрешностям измерения, отложенных по осям величин.

Лабораторная работа № 1

Определение плотности твердых тел правильной

Геометрической формы.

Цель работы: 1) Научиться пользоваться измерительными приборами -

штангенциркулем, микрометром; 2) определить плотность твердых тел правильной геометрической формы; 3) научиться оценивать погрешности измерений.

Приборы и материалы: технические весы, штангенциркуль, микрометр, телаправильной геометрической формы.

Теоретические сведения.

Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru Штангенциркуль состоит из линейки со шкалой 1, имеющей миллиметровые деления, и нониуса 4 — дополнительной линейки, которая может перемешаться вдоль шкалы (рис. 1).Нониус имеет 10 делений, которые равны 9 делениям шкалы, поэтому каждое деление нониуса короче деления шкалы на 0,1 и равно 0,9 мм (рис.1). При сдвинутых щеках штангенциркуля нулевая отметка нониуса совпадает с нулевой отметкой линейки, а десятая отметка — с девятой отметкой линейки. При этом первое деление нониуса не доходит до первого деления линейки на 0,1 мм. Второе деление нониуса соответственно не доходит до второго деления линейки уже на 0,2 мм и т. д. Следовательно, если раздвинуть щеки штангенциркулем так, чтобы первая отметка нониуса совпала с первой отметкой линейки, то между щеками образуется просвет 0,1 мм. Если совпадет с отметкой линейки вторая отметка нониуса, просвет между щеками будет уже 0.2 мм и т. д. Следовательно, отметка нониуса, совпадающая с отметкой линейки, указывает расстояние между щеками в десятых долях миллиметра. Таким образом, можно сформулировать следующие правила пользования штангенциркулем:

— При измерении длины тела его зажимают между щеками штангенциркуля. Отсчет целых делений (мм) производят по шкале линейки до нуля нониуса, затем отсчитывают по нониусу десятые доли миллиметра, число которых равно номеру штриха на нониусе, совпавшему со штрихом основной шкалы.

— Штангенциркулем можно измерять внутренний диаметр отверстий и глубину отверстий (рис. 2).

— Проверяют штангенциркуль при сдвинутых щеках по совпадению нулевой отметки нониуса с нулевой отметкой шкалы линейки. Микрометр. Основные части микрометра (рис.3) — стальная скоба 8 и втулка 3, имеющая с внутренней стороны микрометрическую резьбу, а на поверхности — шкалу с делениями в 0,5 мм и продольную черту.Во втулку ввертывается микрометрический винт 2. На правый конец винта насажена гильза 5, имеющая 50 делений. Гильза скреплена с микрометрическим винтом непосредственно или гайкой, навинчиваемой на ее правый конец. При вращении винта она вращается вместе с ним.

С правой стороны микрометрического винта ввертывается трещотка 6, с помощью которой производится передвижение винта во втулке. Трещотка регулирует нажим на Графическое представление результатов экспериментов - student2.ru измеряемое тело и позволяет получать более точные результаты измерений микрометром. На левом конце скобы находится упорная щека — наковаленка 1. Для закрепления винта в определенном положении применяется фиксатор в виде рычажка или кольца 7.Шаг винта микрометра равен 0,5 мм, поэтому микрометр имеет на втулке шкалу с делениями через 0,5 мм. Число делений на гильзе равно 50, и, следовательно, от поворота гильзы на одно деление винт отходит от щеки на 0,01 мм; при двух оборотах гильзы последняя проходит 100 делений, и винт отодвигается от щеки на 1 мм. ГОСТом 6507 для микрометра МК с пределом измерения 25 мм и ценой деления 0,01 мм допускаемая погрешность нормирована ±4 мкм. При использовании микрометра с ценой деления 0,01 мм на лабораторных занятиях допускаемая погрешность может быть взята ±0,005 мм. Пример показания микрометра — 8,21 мм—дан на рисунке 4.

Правила пользования микрометром.

Графическое представление результатов экспериментов - student2.ru — Перед началом работы необходимо тщательно протереть измерительные плоскости микрометра, проверить плавность хода микровинта .и установку на нуль; если установка сбита, исправить микрометр может только специалист.

— Точная, окончательная установка винта при измерении производится трещоткой, иначе можно испортить нарезку микровинта.

— Не следует пользоваться микрометром с застопоренным фиксатором.

После окончания работы микрометр следует протереть и аккуратно уложить в предназначенный для него футляр.

Плотность вещества – физическая величина, численно характеризующая массу вещества в пределах объема данного тела, определяемая отношением массывещества к занимаемому им объему, Графическое представление результатов экспериментов - student2.ru

Порядоквыполнения работы

а) измерение плотности цилиндра:

  1. Записать значение массы и ее абсолютную ошибкув таблицу 1.
  2. Измерить диаметр и высоту цилиндра штангенциркулем 3 раза.
  3. Посчитать среднее значение и абсолютные ошибки измерений и занести их значения в таблицу 1.
  4. Плотность рассчитать один раз, по средним значениям:

Графическое представление результатов экспериментов - student2.ru .

  1. Вычислить относительную и абсолютную ошибки средней плотности:

Графическое представление результатов экспериментов - student2.ru

  1. Занести результаты в таблицу 1.

Таблица 1

№ п/п m Δm Измерение штангенциркулем
D ΔDслуч ΔDсис Графическое представление результатов экспериментов - student2.ru H ΔHслуч ΔHсис Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru
  кг   кг м   м м м   м   м м м кг/м3 % кг/м3
· 10 -3      
                   
       
       
Среднее значение        

7. Окончательный результат записать в виде:

Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru .

8. Аналогичные действия произвести с микрометром. Результаты занести в таблицу 2.

Таблица 2

№ п/п m Δm Измерение микрометром
D ΔDслуч ΔDсис Графическое представление результатов экспериментов - student2.ru H ΔHслуч ΔHсис Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru
  кг   кг м   м м м   м   м м м кг/м3 % кг/м3
· 10 -3      
                   
       
       
Среднее значение        

9. Окончательный результат записать в виде:

Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru .

б) измерение плотности параллепипеда:

  1. Записать значение массы и ее абсолютную ошибкув таблицу 3.
  2. Измерить ширину, длину и высоту цилиндра штангенциркулем 3 раза.
  3. Рассчитать средние значения и абсолютные ошибки прямых измерений этих величин.
  4. Результаты занести в таблицу 3.
  5. Вычислить плотность параллелепипеда по формуле:

Графическое представление результатов экспериментов - student2.ru .

  1. Вычислить относительную и абсолютную ошибки плотности, используя формулу:

Графическое представление результатов экспериментов - student2.ru

  1. Занести результаты в таблицу 3.

Таблица 3

№ п/п m Δm Измерение штангенциркулем
а Δаслуч Δасис Графическое представление результатов экспериментов - student2.ru b Δbслуч Δbсис Графическое представление результатов экспериментов - student2.ru с Δсслуч Δссис Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru
кг кг м м м м м м м м м м м м кг/м3 %, кг/м3
· 10 -3    
                           
           
           
Среднее значение            

7. Окончательный результат записать в виде:

Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru .

8. Аналогичные действия произвести с микрометром. Результаты занести в таблицу 4.

Таблица 4

№ п/п m Δm Измерение микрометром
а Δаслуч Δасис Графическое представление результатов экспериментов - student2.ru b Δbслуч Δbсис Графическое представление результатов экспериментов - student2.ru с Δсслуч Δссис Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru
кг кг м м м м м м м м м м м м кг/м3 %, кг/м3
· 10 -3    
                           
           
           
Среднее значение            

9. Окончательный результат записать в виде:

Графическое представление результатов экспериментов - student2.ru Графическое представление результатов экспериментов - student2.ru .

Контрольные вопросы:

  1. Расскажите о назначении и точности приборов используемых в работе.
  2. Назовите методы измерения физических величин.
  3. Ошибки измерений (виды, определения, причины возникновения и пути уменьшения их влияния на результат измерения).
  4. Как определить погрешности при прямых измерениях?
  5. Как определить погрешности при косвенных измерениях?

ЛИТЕРАТУРА

1. Электронная библиотека Попечительского совета механико-математического факультета Московского государственного университета.- [Электронный ресурс]. Систем. требования: AdobeAcrobatReader. – URL: http://lib.mexmat.ru/books/6791

2. Электронная научная библиотека Астраханского государственного технического университета - [Электронный ресурс]. Систем. требования: AdobeAcrobatReader. – URL: http://library.astu.org

Лабораторная работа № 2

ОПРЕДЕЛЕНИЕ УСКОРЕНИЯ СИЛЫ ТЯЖЕСТИ ПРИ ПОМОЩИ

ОБОРОТНОГО МАЯТНИКА

Цель работы: измерить ускорение силы тяжести для Астрахани.

Оборудование: оборотный маятник, секундомер, линейка.

Теоретическое введение

Между любыми видами материи (как между частицами вещества, так и между полевыми частицами) существует уникальное взаимодействие, которое имеет всегда и в любом уголке Вселенной. Это взаимодействие называется тяготением. Тяготеют друг к другу все объекты природы.

Классическую нерелятивистскую теорию гравитации создал Исаак Ньютон в 1687 году. Согласно этой теории сила тяготения может быть определена по закону всемирного тяготения. Свой закон всемирного тяготения Ньютон открыл, основываясь на эмпирических законах Иоганна Кеплера, известных к тому времении наблюдая за движением небесных тел. Проверив закон всемирного тяготения на примере Луны, Ньютон обобщил его на все тела, которые можно принять за материальные точки или тела, имеющие сферическую форму.

Закон всемирного тяготения: две материальные точки с массами m1 и m2 притягивают друг друга с силой, пропорциональной произведению масс этих точек и обратно пропорциональной квадрату расстояния r между ниминаправленной вдоль линии, соединяющей эти точки:

Графическое представление результатов экспериментов - student2.ru . (2.1)

В векторной форме закон имеет вид:

Графическое представление результатов экспериментов - student2.ru . (2.2)

Здесь F1,2 – сила, действующая на первую материальную точку со стороны второй, Графическое представление результатов экспериментов - student2.ru – радиус-вектор, направленный от первой материальной точки ко второй. Сила F2,1отличается от силы F1,2 только знаком: Графическое представление результатов экспериментов - student2.ru .

Коэффициент пропорциональности G называют гравитационной постоянной или постоянной тяготения. Общепринятое значение G:

G = 6,67 * 10 –11 Графическое представление результатов экспериментов - student2.ru .

Закон всемирного тяготения, выраженный формулой (2.1), справедлив только для двух материальных точек или двух тел сферической формы, или материальной точки и тела сферической формы. Кроме того, его можно применять к телу произвольной формы, которое можно принять за материальную точку, но при это если второе тело иметь форму шара, например, когда одно тело – ракета, а другое – планета. В этом случае за расстояние r в формуле (2.1) принимают расстояние между материальной точкой и центром планеты. В случае двух тел сферической формы за расстояние r в формуле (2.1) принимают расстояние между их центрами.

Чтобы вычислить силу тяготения между телами произвольной формы или с произвольным распределением вещества в них, следует векторно сложить все силы тяготения между каждой i-ой материальной точкой и каждой k-ой точкой второго. Тогда закон всемирного тяготения имеет вид:

Графическое представление результатов экспериментов - student2.ru

Здесь N1 иN2 – количество материальных точек в первом и втором телах, miи mk – массы i-ой иk-ой точек, rik – расстояние между этими точками.

Сила, с которой два тела притягиваются друг к другу, называется гравитационной (или силой всемирного тяготения). Силы всемирного тяготения – самые универсальные из всех сил природы, так как они действуют между любыми телами, имеющими массу, а массу имеют все материальные тела. Универсальны они еще и тем, что для них не существует никаких преград, они проникают сквозь все тела и область их действия безгранична.Силы тяготения всегда являются силами притяжения и направлены вдоль одной прямой, проходящей через центры взаимодействующих тел. Гравитационное взаимодействие является фундаментальным. Самым замечательным свойством гравитационных сил является их свойство сообщать всем телам независимо от массы, формы и размеров одинаковое ускорение. Это свойство связано с пропорциональностью сил тяготения массам тел, на которые они действуют.

На любое тело, расположенное вблизи Земли, действует гравитационная сила F, под влиянием которой, согласно второму закону Ньютона, тело начинает двигаться с ускорением свободного падения g, то есть в системе отсчета, связанной с Землей, на всякое тело массой m действует сила, равная:

Графическое представление результатов экспериментов - student2.ru , (2.3)

называемая силой тяжести.

Согласно фундаментальному физическому закону, обобщенному закону Галилея, все тела в одном и том же поле тяготения падают с одинаковым ускорением. Следовательно, в данном месте Земли ускорение свободного падения одинаково для всех тел. Его изменение в разных точках пространства обусловлено суточным вращением Земли вокруг своей оси, а так же её формой и неоднородностью.

Если пренебречь суточным вращением Земли вокруг своей оси, то сила тяжести и сила тяготения равны между собой:

Графическое представление результатов экспериментов - student2.ru (2.4)

где М – масса Земли, R0 – радиус Земли, h – расстояние от поверхности Земли до тела. Из формулы следует, что

Графическое представление результатов экспериментов - student2.ru , (2.5)

то есть g зависит только от расстояния между телом и земной поверхностью. Важным следствием этой формулы является также то, что g не зависит от массы тел.

Состояние тела, при котором оно движется только под действием силы тяжести, называется свободным падением.

Гравитационное взаимодействие между телами осуществляется посредством поля тяготения (гравитационного поля). Это поле порождается телами и является одной из форм материи.

Для силовой характеристики гравитационного поля вводится векторная величина

Графическое представление результатов экспериментов - student2.ru , (2.6)

Графическое представление результатов экспериментов - student2.ru

где F – сила, действующая в данной точке поля на тело массой m. Эта величина называется напряженностью гравитационного поля. Можно говорить, что ускорение свободного падения и напряженность гравитационного поля одна и та же величина.

Энергетической характеристикой гравитационного поля является потенциал гравитационного поля численное значение которого выражается формулой:

Графическое представление результатов экспериментов - student2.ru , (2.7)

где Ep– потенциальная энергия, которой обладает тело массы m в данной точке поля.

Связь между напряженностью и потенциалом гравитационного поля устанавливает соотношение:

Графическое представление результатов экспериментов - student2.ru . (2.8)

В физике всякое твёрдое тело, колеблющееся под действием силы тяжести вокруг неподвижной точки или оси, называют маятником.

Таким образом физическим маятникомназывается твердое тело, которое может качаться вокруг неподвижной горизонтальной оси. (рис.2.1).
При отклонении маятника от положения равновесия возникает момент М силы тяжести, стремящийся вернуть маятник в положение равновесия. Этот момент равен:

M = - m g l sinj (2.9)

где m – масса маятника, l – расстояние между точкой подвеса и центром тяжести C. Центром тяжести тела называется точка, к которой приложена сила тяжести, действующая на это тело. Момент М имеет такое направление, что стремится уменьшить угол отклонения j. Поэтому в соотношении (2.9) стоит знак минус. Для отыскания закона движения маятника воспользуемся основным уравнением динамики вращательного движения: Графическое представление результатов экспериментов - student2.ru , (2.10)


где I – момент инерции тела относительно оси, проходящей через точку О; e - угловое ускорение, численно равное:

Графическое представление результатов экспериментов - student2.ru

Графическое представление результатов экспериментов - student2.ru .

Момент сил трения для простоты расчетов не учитываем.

Подставив в этот закон соотношение (2.9), получаем уравнение движения маятника в дифференциальной форме:

Графическое представление результатов экспериментов - student2.ru - mglsinj . (2.11)

В случае малых углов при отклонении маятника sinj»j , тогда уравнение (2.11) можно записать в упрощённой форме:

Графическое представление результатов экспериментов - student2.ru mglj. (2.12)

Решение этого уравнения имеет вид:

Графическое представление результатов экспериментов - student2.ru , (2.13)


где Графическое представление результатов экспериментов - student2.ru - циклическая частота.

Зная, что

Графическое представление результатов экспериментов - student2.ru

получаем для периода колебаний физического маятника:

Графическое представление результатов экспериментов - student2.ru . (2.14)

Частным случаем физического маятника является математический маятник. Так называется маятник, вся масса которого практически сосредоточена в одной точке – в центре масс маятника С. Примером математического маятника может служить шарик, подвешенный на длинной нити.

Момент инерции математического маятника, как материальной точки относительно неподвижной точки О равен:

Графическое представление результатов экспериментов - student2.ru . (2.15)

Подставив в формулу (2.14) выражение (2.15) получим, что период колебаний математического маятника равен:

Графическое представление результатов экспериментов - student2.ru . (2.16)

  Графическое представление результатов экспериментов - student2.ru    

Из сопоставления формул (2.14) и (2.16) получается, что физический маятник имеет тот же период колебаний, что и математический с длиной:

Графическое представление результатов экспериментов - student2.ru . (2.17)

Выражение I / ml называют приведённой длиной физического маятника. lпр – эта длина такого математического маятника, период колебаний которого совпадает с периодом данного физического маятника.

Графическое представление результатов экспериментов - student2.ru На практике приведённая длина физического маятника определяется расстоянием между точкой подвеса маятника О и его центром качания О׳, если периоды колебаний на обеих призмах совпадают (рис.2.1). Точка на прямой, соединяющая точку подвеса с центром тяжести на расстоянии приведённой длины от вращения называется центром качания физического маятника. Точка подвеса О и центр качания О׳ обладают свойством взаимности. Если подвесить физический маятник в точке O׳, а прежняя точка подвеса станет центром качания то приведённая длина, а значит и период колебаний маятника не изменится.

На этом свойстве основано определение ускорения свободного падения с помощью оборотного маятника. Оборотным маятником называется маятник, у которого имеются параллельные закреплённые вблизи его концов опорные призмы П1 и П2, на которых он может совершать колебания, опираясь на ребро той или иной призмы (рис.2.3). Вдоль маятника может перемещаться закреплённый на нём груз Г1. Перемещением этого груза можно установить такое положение центра тяжести маятника, что при подвешивании его на любую из призм период колебаний останется одинаковым. Тогда расстояние между опорными призмами составит lпр. Измерив период колебаний маятника и зная его приведённую длину, можно по формуле:

Графическое представление результатов экспериментов - student2.ru (2.18)

определить ускорение свободного падения:

Графическое представление результатов экспериментов - student2.ru .

Так как оборотный маятник – частный случай физического маятника, то необходимо решить вопрос: когда же физический маятник можно считать оборотным?

Основное свойство оборотного маятника состоит в том, что центр вращения (точка О) и центр качаний (точка О') взаимозаменяемы.

Рассмотрим три возможных соотношения между длиной l и приведенной длиной lпр физического маятника:

1) Графическое представление результатов экспериментов - student2.ru ;

Графическое представление результатов экспериментов - student2.ru ;

Графическое представление результатов экспериментов - student2.ru ;

Графическое представление результатов экспериментов - student2.ru ,

что невозможно, так как величины I, m, l по сути своей положительные. При таком соотношении между l и lпр маятник будет переворачиваться, так как центр тяжести оказывается выше точки подвеса и тело находится в положении неустойчивого равновесия.

2) Графическое представление результатов экспериментов - student2.ru ;

Графическое представление результатов экспериментов - student2.ru ;

Графическое представление результатов экспериментов - student2.ru ;

Графическое представление результатов экспериментов - student2.ru ;

Графическое представление результатов экспериментов - student2.ru ,

то есть тело будет находиться в состоянии покоя.

3) Графическое представление результатов экспериментов - student2.ru ;

Графическое представление результатов экспериментов - student2.ru ;

Графическое представление результатов экспериментов - student2.ru ;

Графическое представление результатов экспериментов - student2.ru ,

то есть только в этом случае будут происходить колебания.

Порядок выполнения работы.

1. Поставим груз Г1 в положение 1 на шкале маятника.

2. Отклонив маятник на угол не более 20°, замерим t1 – время 25 полных колебаний на опорной призме П1.

3. Перевернём маятник и замерим t2 – время 25 полных колебаний на опорной призме П2.

4. Повторим пункты 2 и 3 для случаев, когда груз Г1 находится в положениях 2, 3, 4, 5 шкалы маятника.

5. Результат заносим в таблицу № 1.

Таблица № 1

№ п/п Деления шкалы, см N – число колебаний t1 c T1 c t2 c T2 c
       
       
       
       
       

где,T1 – период колебаний маятника на призме П1, T2 – период колебаний маятника на призме П2.

6. Вычислим периоды Графическое представление результатов экспериментов - student2.ru и Графическое представление результатов экспериментов - student2.ru по формуле:T = t / n .

7. По табличным данным строим график зависимости соответствующих периодов Графическое представление результатов экспериментов - student2.ru и Графическое представление результатов экспериментов - student2.ru от положения груза Г1 на шкале маятника. Если пересечение двух графиков не произошло или точек пересечения несколько, то работа выполнена неверно. Требуется повторить измерения заново.

Графическое представление результатов экспериментов - student2.ru

8. Из пересечения кривых на графике находим Т0 – период, одинаковый для колебаний маятника на призмах П1 и П2.

9. Ставим подвижный груз в положение Х, соответствующее пересечению кривых на графике и измеряем периоды колебаний на одной и второй призме (число колебаний не менее 50).

10. Исходя из полученных значений Графическое представление результатов экспериментов - student2.ru , Графическое представление результатов экспериментов - student2.ru , найти среднее значение периода колебаний (Тср).

11. Определите относительную ошибку в определении периода (ET,%).

12. Вычислите среднюю абсолютную ошибку в определении периода (DТср).

13. Вычислите среднее значение ускорения свободного падения по формуле:

Графическое представление результатов экспериментов - student2.ru

14. Вычислите относительную ошибку в определении ускорения свободного падения, исходя из относительной ошибки периода:


Графическое представление результатов экспериментов - student2.ru .

15. Найдите среднюю абсолютную ошибку ускорения свободного падения:

Графическое представление результатов экспериментов - student2.ru .

16. Запишитерезультат измерения в виде:

Графическое представление результатов экспериментов - student2.ru

17. Запишите вывод о проделанной работе.

Правила техники безопасности.

1. Угол отклонения маятника от вертикального положения не должен превышать 10°-200.

2. Следить, чтобы во время выполнения работы ребро призмы маятника не соскальзывало с опоры кронштейна.

Контрольные вопросы.

1. Закон всемирного тяготения. Для каких случаев взаимодействия тел он будет справедлив?

2. Гравитационная сила.

3. Сила тяжести.

4. Гравитационное поле. Основные характеристики гравитационного поля.

5. Что представляют собой математический, физический и оборотный маятники?

6. Составьте дифференциальные уравнения движения маятников. Запишите их решения. Сделайте анализ решения.

7. Выведите формулу периода для физического маятника.

8. Как получить формулу периода для математического и оборотного маятника.

9. Получите расчетную формулу для определения ускорения свободного падения.

10. Объясните физический смысл величины g.От каких величин и как зависит данная?

11. Назовите основные этапы выполнения работы и правила техники безопасности при этомобъяснить:

а) расчет искомых величин;

б) нахождение ошибок в определении этих величин.

12. Что такое приведённая длина для физического и оборотного маятника? Как в эксперименте определите приведенную длину оборотного маятника?

13. Какой знак нужно поставить между l и lпрдля физического маятника, чтобы его можно было считать оборотным? (Рассмотреть с точки зрения теории равновесия).

Литература.

1. Трофимова Т.И. Физика: учебник для высшего проф. образования - М.: Академия, 2012. -320с.

2. Электронная библиотека Попечительского совета механико-математического факультета Московского государственного университета.- [Электронный ресурс]. Систем. требования: AdobeAcrobatReader. – URL: http://lib.mexmat.ru/books/6791

3. Электронная научная библиотека Астраханского государственного технического университета - [Электронный ресурс]. Систем. требования: AdobeAcrobatReader. – URL: http://library.astu.org

Лабораторная работа № 3

Наши рекомендации