Индивидуальные и общие индексы.
В зависимости от степени охвата подвергнутых обобщению единиц изучаемой совокупности индексы подразделяются на индивидуальные (элементарные) и общие.
Индивидуальные индексыхарактеризуют изменения отдельных единиц статистической совокупности. Так, например, если при изучении оптовой реализации продовольственных товаров определяются изменения в продаже отдельных товарных разновидностей, то получают индивидуальные (однотоварные) индексы.
Общие индексывыражают сводные (обобщающие) результаты совместного изменения всех единиц, образующих статистическую совокупность. Пример, показатель изменения объема реализации товарной массы продуктов питания по отдельным периодам будет общим индексом физического объема товарооборота.
Важной особенностью общих индексов является то, что они обладают синтетическими и аналитическими свойствами.
Синтетические свойства индексов состоят в том, что посредством индексного метода производится соединение (агрегирование) в целом разнородных единиц статистической совокупности.
Аналитическиесвойства индексов состоят в том, что посредством индексного метода определяется влияние факторов на изменение изучаемого показателя.
Для определения индекса надо произвести сопоставление не менее двух величин. При изучении динамики социально-экономических явлений сравниваемая величина (числитель индексного отношения) принимается за текущий (или отчетный) период, а величина, с которой производится сравнение — за базисный период.
Основным элементом индексного отношения является индексируемая величина. Под индексируемой величиной понимается значение признака статистической совокупности, изменение которой является объектом изучения. Так, при изучении изменения цен индексируемой величиной является цена единицы товара p. При изучении изменения физического объема товарной массы в качестве индексируемой величины выступают данные о количестве товаров в натуральных измерителях q. Стоимость продукции обозначается через s.
Индивидуальные индексы принято обозначать i, а общие индексы — I.
Знак внизу справа означает период:
— базисный,
— отчетный.
Пример.
В текущем, отчётном году предприятие произвело 120 тыс.т. продукции вместо 100 тыс.т. в прошлом базисном, году. Цены за каждую тонну этой продукции снизились с 20 до 18 рублей; а её общая стоимость возросла с 2 000 до 2 160 тыс. руб.
В данном примере можно вычислить три индекса:
индекс объёма продукции: или 120%;
индекс цен: или 90%;
индекс стоимости продукции: или 108%
Полученные индексы показывают, что объём продукции и её стоимость возросла в отчётном году по сравнению с базисным в 1,2 и 1,08 раза, а цены, наоборот, снизились до 1,9 их базисного уровня. Все три индекса образуют систему показателей — сомножителей: или 1,2 * 0,9 = 1,08.
Агрегатные индексы.
Основной формой общих индексов являются агрегатные индексы.
Достижение в сложных статистических совокупностях сопоставимости разнородных единиц осуществляется введением в индексные отношения специальных сомножителей индексируемых величин. Такие сомножители называются соизмерителями. Они необходимы для перехода от натуральных измерителей разнородных единиц статистической совокупности к однородным показателям. При этом в числителе и знаменателе общего индекса изменяется лишь значение индексируемой величины, а их соизмерители являются постоянными величинами.
В качестве соизмерителей индексируемых величин выступают тесно связанные с ними экономические показатели: цены, количество и др.
Произведение каждой индексируемой величины на соизмеритель образует в индексном отношении определённые экономические категории.
Пример.
Таблица 1.
Товар | Ед. изм. | I период | II период | Индивидуальные индексы | |||||
цена за единицу товара, руб. | кол-во | цена за единицу товара, руб. | кол-во, | цен | физич-го объёма | ||||
А | т | 7 500 | 1,25 | 1,27 | |||||
Б | м | 2 000 | 1,0 | 1,25 | |||||
В | шт. | 1 000 | 0,67 | 1,5 | |||||
При определении по данным таблицы статистических индексов первый период принимается за базисный, в котором цена единицы товара принимается , а количество — .
Второй период принимается за текущий (или отчетный), в котором цена единицы товара обозначается , а количество — .
Индивидуальные индексы показывают, что в текущем периоде по сравнению с базисным цена на товар А повысилась на 25%, на товар Б осталась без изменения, а на товар В снизилась на 33%. Количество реализации товара А возросло на 27%, товара Б — на 25%, а товара В — на 50%.
При определении общего индекса цен в агрегатной форме в качестве соизмерителя индексируемых величин и могут приниматься данные о количестве реализации товаров в текущем периоде . При умножении на индексируемые величины в числителе индексного отношения образуется значение ,
сумма стоимости продажи товаров в текущем периоде по ценам того же текущего периода. В знаменателе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в текущем периоде по ценам базисного периода.
Агрегатная формула такого общего индекса цен имеет следующий вид:
= (1)
Расчёт агрегатного индекса цен по данной формуле предложил немецкий экономист Г. Пааше, поэтому он называется индексом Пааше.
Применяем формулу для расчёта агрегатного индекса цен по данным табл.1:
числитель индексного отношения
=25 * 9 500 + 30 * 2 500 + 10 * 1 500 = 327 500 руб.
знаменатель индексного отношения
= 20 * 9 500 + 30 * 2 500 + 15 * 1 500 = 287 500 руб.
Полученные значения подставляем в формулу 1:
= или 113,9%
Применение формулы 1 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 13,9%.
При другом способе определения агрегатного индекса цен в качестве соизмерителя индексируемых величин и могут применяться данные о количестве реализации товаров в базисном периоде . При этом умножение на индексируемые величины в числителе индексного отношения образует значение , т.е. сумму стоимости продажи товаров в базисном периоде по ценам текущего периода.
В знаменателе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в базисном периоде по ценам того же базисного периода.
Агрегатная формула такого общего индекса имеет вид:
= (2)
Расчёт общего индекса цен по данной формуле предложил немецкий экономист Э. Ласпейрес, и получил название индекса Ласпейреса.
Применяем формулу для расчёта агрегатного индекса цен по данным табл.1:
числитель индексного отношения
= 25 * 7 500 + 30 * 2 000 + 10 * 1000 = 257 500 руб.
знаменатель индексного отношения
= 20 * 7 500 + 30 * 2 000 + 15 * 1 000 = 225 000 руб.
Полученные значения подставляем в формулу 2:
=или 114,4%
Применение формулы 2 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 14,4%.
Таким образом, выполненные по формулам 1 и 2 расчёты имеют разные показания индексов цен. Это объясняется тем, что индексы Пааше и Ласпейреса характеризуют различные качественные особенности изменения цен.
Индекс Пааше характеризует влияние изменения цен на стоимость товаров, реализованных в отчётном периоде. Индекс Ласпейреса показывает влияние изменения цен на стоимость количества товаров, реализованных в базисном периоде.
Другим важным видом общих индексов, которые широко применяются в статистике, являются агрегатные индексы физического объёма товарной массы.
При определении агрегатного индекса физического объёма товарной массы в качестве соизмерителей индексируемых величин и могут применяться неизменные цены базисного периода . При умножении на индексируемые величины в числителе индексного отношения образуются значение , т.е. сумма стоимости товарной массы текущего периода в базисных ценах. В знаменателе — , т.е. сумма стоимости товарной массы базисного периода в ценах того же базисного периода.
Агрегатная форма общего индекса имеет следующий вид:
= (3)
Поскольку, в числителе формулы 3 содержится сумма стоимости реализации товаров в текущем периоде по неизменным (базисным) ценам, а в знаменателе — сумма фактической стоимости товаров, реализованных в базисном периоде в тех же неизменных (базисных) ценах, то данный индекс является агрегатным индексом товарооборота в сопоставимых (базисных) ценах.
Используем формулу 3 для расчёта агрегатного индекса физического объёма реализации товаров по данным табл.1:
числитель индексного отношения
= 9 500 * 20 + 2 500 * 30 + 1 500 * 15 = 287 500 руб.
знаменатель индексного отношения
= 7 500 * 20 + 2 000 * 30 + 1 000 * 15 = 225 000 руб.
Полученные значения подставляем в формулу 3:
= или 127,8%
Применение формулы 3 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,8%.
Агрегатный индекс физического объёма товарооборота может определяться посредством использования в качестве соизмерителя индексируемых величин и цен текущего периода .
Агрегатная формула общего индекса будет иметь вид:
= (4)
числитель индексного отношения
= 9 500 * 25 + 2 500 * 30 + 1 500 * 10 = 327 500 руб.
знаменатель индексного отношения
= 7 500 * 25 + 2 000 * 30 + 1 000 * 10 = 257 500 руб.
Полученные значения подставляем в формулу 4:
= или 127,2%
Применение формулы 4 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,2%.
Аналогичным образом производится расчёт индекса себестоимости, при этом сравниваются суммы затрат в производстве в отчётном периоде (— числитель индекса) с суммой затрат в производстве на продукцию отчётного периода по себестоимости базисного периода (— знаменатель).
Индексы с постоянными
И переменными весами.
При изучении динамики коммерческой деятельности приходится производить индексные сопоставления более чем за два периода.
Поэтому индексные величины могут определяться как на постоянной, так и на переменной базах сравнения. При этом, если задача анализа состоит в получении характеристик изменения изучаемого явления во всех последующих периодах по сравнению с начальным, то вычисляются базисные индексы. Например, сопоставление объёма розничного товарооборота II, III и IV кварталов с I кварталом.
Но если требуется охарактеризовать последовательно изменения изучаемого явления из периода в период, то вычисляются цепные индексы. Например, при изучении объёма розничного товарооборота по кварталам года сопоставляют товарооборот II квартала c I, III — cо II и IV — с III кварталом.
В зависимости от задачи исследования и характера исходной информации базисные и цепные индексы исчисляются как индивидуальные, так и общие.
Способы расчёта индивидуальных базисных и цепных индексов аналогичны расчёту относительных величин динамики. Общие индексы в зависимости от их вида вычисляются с переменными и постоянными весами — соизмерителями.
Используя индексный ряд за несколько периодов, можно получить динамику стоимости продукции и динамику товарооборота в неизменных ценах, т.е. в ценах какого - то одного прошлого периода. Такие индексные ряды называются индексами с постоянными весами. Для них действует правило: произведение цепных индексов даёт индекс базисный.
Пример.
По заводу имеются данные об объёме производства и стоимости продукции.
Таблица 2.
Вид. прод. | Ед. изм. | Произведено продукции | Цена в 1985г., тыс.руб. | Стоимость продукции в неизменных ценах 1985, тыс.руб. | |||||
А | тыс.т. | 5 000 | |||||||
Б | млн.шт. | 5,5 | 6,2 | 7,0 | 2 000 | ||||
всего | - | - | - | - |
Требуется рассчитать индексы физического объёма продукции с постоянными весами.
Индексы с постоянной базой (базисные):
Индексы с переменной базой (цепные):
Убедимся, что произведение цепных индексов равно базисному:
1,126 * 1,128 = 1,27
Если индексы цен, себестоимости и производительности труда имеют в качестве весов количество продукции отчётного периода, то эти индексы образуют индексные ряды с переменными весами, поскольку в каждом отдельном индексе отчётный период изменяется. Индексы с переменными весами не подчиняются правилу, согласно которому произведение цепных индексов равно базисному.
Пример.
Имеются данные об объёме производства и себестоимости продукции:
Таблица 3.
Вид | Единица | Выработано продукции за квартал | Себестоимость единицы продукции в квартал, руб. | ||||
Продукции | измерения | I | II | III | I | II | III |
А | шт. | 9,9 | 9,6 | ||||
Б | шт. | ||||||
В | кг. | 7 800 | 8 200 | 8 500 | 0,5 | 0,48 | 0,45 |
Рассчитать индексы себестоимости с переменными весами.
Перемножив цепные индексы, получим:
0,989 * 0, 963 = 0, 9524
Рассчитаем базисный индекс III квартала:
Как видим, расхождение есть, но оно проявляется только в четвёртом знаке после запятой. Величина расхождения не многим более 0,01%.
Средние индексы.
Всякий агрегатный индекс может быть преобразован в средний арифметический из индивидуальных индексов. Для этого индексируемая величина отчётного периода, стоящая в числителе агрегатного индекса, заменяется произведением индивидуального индекса на индексируемую величину базисного периода.
Так, индивидуальный индекс цен равен , откуда .
Следовательно, преобразование агрегатного индекса цен в средний арифметический имеет вид:
==
Аналогично индекс себестоимости равен , откуда , следовательно, ==,
Аналогично индекс физического объёма продукции (товарооборота) равен , откуда , следовательно, ==
Пример.
Определить средний арифметический индекс физического объёма продукции.
Таблица 4.
Отрасль произв. | Стоимость прод. в базисном году, млн. руб. | Индексы физич. объёма прод. в отчёт. году (базис. год = 1) |
Сахарная | 1,47 | |
Мукомольная | 1,55 | |
Мясная | 1,71 | |
Рыбная | 2,1 | |
ИТОГО | - |
== или 166,7%
Физический объём продукции 4 отраслей увеличился на 66,7%.