Бабочка, дрозофила и квантовая малиновка
Фред Уркухарт родился в 1912 году в Канаде, в городе Торонто. Там он учился в школе, расположенной вблизи рогозовых болот. Он проводил бессчетные часы, наблюдая за насекомыми, особенно за бабочками, населявшими камышовые заросли. Он очень любил раннее лето, когда на болота слетались тысячи монархов, знаменитых североамериканских бабочек с узнаваемой черно-оранжевой раскраской. Монархи остаются здесь на все лето, питаясь местным молочаем, а осенью улетают снова. Фреда всегда интересовал ответ на вопрос: куда же улетают эти бабочки?
Согласно святому Павлу, взрослые со временем отбрасывают все детское. Но только не Фред, который, даже повзрослев, по-прежнему интересовался тем, где зимуют монархи. Изучив зоологию в Университете Торонто и впоследствии став профессором в этой области, он вернулся к своему детскому вопросу. К тому времени он женился на Норе Паттерсон, также зоологе и любительнице бабочек.
Используя классические методы маркировки животных, Фред и Нора попытались раскрыть тайну исчезновения монархов. Задача была не из легких. В то время как метки, прикрепленные к лапкам малиновок или к плавникам китов, держатся крепко, приклеивание метки к хрупким перепончатым крыльям бабочек представляет собой настоящий вызов терпению ученого. Семейная команда экспериментировала с наклейками и липкими метками на крыльях насекомых, но метки отклеивались и падали, а меченые бабочки не могли нормально летать. Это продолжалось вплоть до 1940 года, когда решение было найдено: крошечные клейкие метки, похожие на те, что мы с таким трудом соскребаем с новой стеклянной посуды. Вооружившись специальным устройством, исследователи начали помечать и выпускать сотни бабочек-монархов, каждая из которых теперь имела при себе идентификационный номер и инструкцию, согласной которой нашедшему метку надлежало сообщить об этом «на кафедру зоологии Университета Торонто» .
Но на миллионы особей американских монархов приходилось всего два Уркухарта, которые исследовали бабочек таким образом. Пара начала набор волонтеров. К 1950 году они создали сеть из тысяч энтузиастов, которые, в свою очередь, помечали, выпускали, ловили и «переписывали» сотни тысяч бабочек. По мере того как Фред и Нора обновляли карту, на которой отмечались места отлова и освобождения бабочек, постепенно стала вырисовываться следующая картина. Бабочек, выпущенных в Торонто, как правило, находили в южном направлении, на пути, который по диагонали пересекал Соединенные Штаты с северо-востока на юго-запад, проходя через Техас. Однако, несмотря на многочисленные экспедиции, Уркухарты не могли установить конечный пункт зимовья перелетных бабочек, который предположительно находился на юге США.
В конце концов Уркухарты обратили свои взоры южнее, и в 1972 году отчаявшаяся Нора написала о своем проекте в мексиканских газетах. Она обратилась с просьбой к добровольцам сообщать о любых наблюдениях и помочь с маркировкой бабочек. В феврале 1973 года Уркухарты получили письмо от Кеннета C. Брюггера из Мехико, который предлагал свою помощь. Каждый вечер Кен садился за руль своего автофургона и вместе с верной собакой Колой выезжал за город в поисках бабочек. Более чем через год, в апреле 1974 года, он сообщил, что наблюдал множество монархов в горах Сьерра-Мадре в Центральной Мексике. Позже, в конце того же года, Кен сообщил, что видел много бабочек с изорванными крыльями, а также мертвых особей вдоль дорог в горах Сьерра. Нора и Фред с уверенностью ответили, что большие скопления мигрирующих монархов стали жертвами голодных птичьих стай.
Вечером 9 января 1975 года взволнованный Кен позвонил Уркухартам с известием, что он «нашел колонию!.. Миллионы монархов — в вечнозеленых зарослях близ гор». Кен сообщил исследователям, что отправился туда по наводке мексиканских лесорубов, которые утверждали, будто бы видели стаи рыжих бабочек, когда пересекали горы с нагруженными ослами. Тогда в январе 1976 года при поддержке Национального географического общества Нора и Фред собрали экспедицию, чтобы найти и задокументировать таинственное место зимовки монархов, прибывающих в Мексику. На следующий день они отправились в деревню, чтобы совершить оттуда восхождение на «Гору бабочек», на высоту около трех тысяч метров. Такой трудный подъем на большую высоту не был привычным делом для уже немолодой пары (Фреду было 64), и они не были уверены, смогут ли они вообще добраться до вершины. Тем не менее с сердцами, выпрыгивавшими из груди, и с воспоминаниями о ярких бабочках, порхавших в солнечном свете Торонто, они достигли вершины — плато с редкими зарослями можжевельника и остролиста. И там не было никаких бабочек. Разочарованные и изнуренные, они спустились на поляну, заросшую хвойными деревьями, характерными для гор Центральной Мексики, — и именно здесь Фред и Нора наконец-то нашли то, что они искали полжизни: «Мириады бабочек — повсюду. В какой-то умиротворяющей полудреме они облепили ветви деревьев, подобно гирляндам, они окутали стволы деревьев и буквально укрыли землю живым ковром». Пока они стояли затаив дыхание, в восхищении от этого невероятного зрелища, ветка одного из деревьев обломалась, и среди упавших на него бабочек Фред заметил знакомую белую метку с его инструкцией: «на кафедру зоологии Университета Торонто». Эта конкретная бабочка была помечена добровольцем по имени Джим Гилберт из городка Часка, штат Миннесота, расположенного более чем в трех тысячах километров от места, где они находились[83]!
В наши дни путешествия бабочек-монархов считаются ярчайшим примером великих миграций животных. Каждый год в период с сентября по ноябрь миллионы монархов из юго-восточной Канады отправляются на юго-запад и совершают путешествие длиною несколько тысяч километров. Их путь лежит через пустыни, прерии, поля и горы, через географическое «игольное ушко» прохладных речных долин шириной 80 километров между Игл-Пасс и Дель-Рио в Техасе — к вершинам дюжины высоких гор в Центральной Мексике, где они в конце концов находят приют. А весной, после зимовки на прохладных вершинах мексиканских гор, монархи отправляются в обратный путь, к местам, где летом их ожидает огромное количество корма. Самое примечательное, что ни одна отдельно взятая бабочка не проделывает весь этот путь. Они размножаются по пути, так что бабочки, которые возвращаются в Торонто, — это внуки тех монархов, что покинули Канаду осенью.
Как этим насекомым удается перемещаться с такой точностью, что они могут достичь крошечной цели за тысячи километров от места рождения — цели, где ранее бывали только их предки? Это еще одна из тех огромных загадок природы, которые начинают проясняться только сейчас. Как и все мигрирующие животные, бабочки используют различные чувства, включая зрение и обоняние, а также солнечный компас, который помогает корректировать движение по Солнцу в течение дня, по так называемым циркадным часам , биохимическому процессу, присущему всем животным и растениям, который позволяет отслеживать смену дня и ночи в течение суток. Такие часы мы часто называем биологическими или внутренними.
Циркадные часы знакомы нам, например, по собственной усталости, накапливающейся к вечеру, бодрости, которую мы ощущаем утром, а также по тому, как тяжело порой переносим смену часовых поясов при длительном перелете. В последние несколько десятилетий была сделана целая череда увлекательных открытий, проливающих свет на механизм работы этих часов. Одним из наиболее удивительных является тот факт, что испытуемые, которые находятся в изоляции в условиях постоянного освещения, все равно способны поддерживать примерно 24-часовой цикл активности и отдыха, несмотря на отсутствие внешних ориентиров. Кажется, что наши «внутренние» — циркадные — часы жестко запрограммированы. Эти «встроенные» часы, задающие темп всему организму (наше «циркадное чутье»), находятся в головном мозге, а точнее, в гипоталамусе. Несмотря на то что люди в условиях постоянного освещения по-прежнему придерживаются примерно 24-часового цикла, их циркадные часы постепенно сдвигаются относительно реального времени суток, так что их периоды бодрствования и сна не будут синхронны с периодами бодрствования и сна у тех людей, которые не участвуют в эксперименте. Тем не менее при возвращении в условия естественного освещения циркадные часы испытуемых довольно быстро перенастраиваются на фактический цикл дня и ночи в процессе, который получил название «подгонка к суточному ритму».
Солнечный компас бабочек-монархов работает по принципу сравнения высоты Солнца с временем суток — отношения, которое изменяется как с широтой, так и с долготой. Должно быть, у них тоже есть свои биологические часы, которые, как и наши, автоматически подстраиваются под освещенность, чтобы компенсировать изменение во времени восхода и захода Солнца в течение долгой миграции. Но где же у монархов располагаются эти биологические часы?
Как выяснили Уркухарты, бабочки не самые простые животные для исследования; плодовые мушки, о которых мы говорили в предыдущей главе и которые способны учуять и проложить путь сквозь лабиринт, являются гораздо более удобными лабораторными насекомыми, так как они очень быстро размножаются и легко мутируют. Как и мы, плодовые мушки корректируют свои биологические ритмы по циклам смены дня и ночи. В 1998 году генетики обнаружили дрозофил-мутантов, у которых циркадный ритм не зависит от воздействия света[84]. Они выяснили, что мутация произошла в гене, кодирующем белок глаз под названием «криптохром». Подобно белковым каркасам фотосинтезирующих комплексов, которые обеспечивают целостность молекулы хлорофилла (как мы узнали из главы 4), криптохромные белки оборачиваются вокруг молекулы пигмента под названием ФАД (флавинадениндинуклеотид), который поглощает синий свет. Так же как в процессе фотосинтеза, поглощенный свет выбивает электрон из пигмента, что приводит к генерации сигнала, который поступает в мозг мушки, чтобы синхронизировать ее внутренние часы с каждодневной сменой дня и ночи. Мушки-мутанты, обнаруженные в 1998 году, утратили этот белок, так что их биологические часы уже не приспосабливаются к циклической смене дня и ночи: они утратили внутреннее ощущение времени.
Похожие криптохромные пигменты были позже найдены в глазах многих других животных, включая человека, и даже у растений и у фотосинтезирующих микробов, которым они помогают предсказывать время суток, лучше всего подходящее для фотосинтеза. Они могут представлять собой очень древний светочувствительный «датчик», который развился у микробов миллиарды лет назад, чтобы синхронизировать жизнедеятельность клетки с суточными ритмами.
Криптохром также обнаружили и в антеннах бабочек-монархов. Это изначально ставило ученых в тупик: что зрительному пигменту делать в антеннах? Но усики насекомых являются удивительными органами, которые отвечают сразу за несколько чувств, в том числе за обоняние и слух, определение давления воздуха и даже силы тяжести. Могут ли они также отвечать за внутренние часы насекомого? Чтобы проверить эту гипотезу, ученые окрасили усики некоторых бабочек в черный цвет, тем самым предотвращая прием световых сигналов. Они обнаружили, что бабочки с зачерненными антеннами уже не могли подстраивать свой солнечный компас к смене дня и ночи: они утратили циркадное чувство. Ученые предположили, что именно в антеннах бабочки и размещаются биологические часы. Примечательно, что часы в антеннах бабочки могут улавливать свет даже при отделении от насекомого.
Действительно ли криптохром отвечает за подстройку биологических часов монарха? К сожалению, гены бабочек мутируют вовсе не так легко, как гены дрозофил, так что в 2008 году Стивен Репперт и его коллеги из Университета штата Массачусетс осуществили следующий замечательный эксперимент. Команда заменила поврежденный криптохромный ген у дрозофил-мутантов на здоровый ген бабочек-монархов и доказала, что способность синхронизировать внутренние часы со сменой дня и ночи у этих мушек была восстановлена[85]. Если криптохрому здоровых бабочек удалось вернуть плодовым мушкам чувство времени, то весьма вероятно, что он помогает как следует работать и таким важным биологическим часам монархов, которые позволяют долететь от Торонто до Мексики, ни разу не сбившись с пути.
Но какое отношение это все имеет к квантовой механике? Ответ относится к другому аспекту миграции животных, который мы называем «магниторецепция» — способность обнаруживать магнитное поле Земли. Как мы узнали из главы 1, многие существа, в том числе плодовые мушки и бабочки, обладают такой способностью, как магниторецепция. Обладают ею и малиновки, которые стали олицетворением квантовой биологии. К 2008 году стало ясно, что магнитное чувство малиновок как-то связано со светом (подробнее об этом позже), но природа светочувствительных рецепторов была неуловима. Стивен Репперт задался вопросом, может ли криптохром, который отвечает за светочувствительность мух и помогает им настраивать их внутренние часы, также отвечать и за магниторецепцию. Чтобы проверить свою теорию, он провел эксперимент вроде того, что был предпринят Габриэле Герлах, чтобы продемонстрировать обонятельную навигацию у рыб-клоунов (см. главу 5), в котором тестируемое животное вынуждено использовать сенсорные сигналы, чтобы выбрать один из двух путей к пище.
Исследователи обнаружили, что мух можно обучить связывать сладкое вознаграждение с наличием магнитного поля. Когда им предоставлялась возможность выбора лететь в намагниченный или ненамагниченный рукав лабиринта (без пищи, то есть без обонятельных сигналов), они выбирали намагниченный путь. Должно быть, мухи чувствуют магнитное поле. Так принимает ли в этом участие криптохром? Исследователи обнаружили, что дрозофилы-мутанты, у которых криптохрома не хватает, одинаково часто летели в оба рукава, демонстрируя, что криптохром имеет важное значение для их магнитной чувствительности.
В своей работе 2010 года группа Репперта также показала, что мухи сохраняют свою магнитную чувствительность и тогда, когда их криптохромные гены заменяют генами, кодирующими криптохром у бабочек-монархов[86]. Это доказывает, что бабочка-монарх может также использовать криптохром для обнаружения магнитного поля Земли. Работа той же группы ученых в 2014 году показала, что, как и европейская малиновка, с которой мы познакомились в главе 1, бабочка-монарх обладает светочувствительным компасом, который она использует, чтобы найти свой путь от Великих озер до мексиканских гор; и, как и предполагалось, он должен находиться в антеннах[87].
Но каким образом световой пигмент также может обнаруживать невидимое магнитное поле? Чтобы ответить на этот вопрос, мы должны вернуться к нашей знакомой европейской малиновке.
Птичий компас
Как мы уже отмечали в главе 1, наша планета представляет собой гигантский магнит с магнитным полем, влияние которого распространяется от внутреннего ядра в космос на тысячи километров. Этот намагниченный «пузырь», «магнитосфера», защищает все живое на Земле, потому что без него солнечный ветер — поток высокоэнергетических частиц, испускаемых Солнцем, — давно бы уничтожил нашу атмосферу. И в отличие от магнетизма обычного стержневого магнита, поле Земли меняется с течением времени, потому что его источником является расплавленное железное ядро Земли. Точно описать происхождение этого магнетизма довольно сложно, но обычно его объясняют через эффект «динамо-машины», который заключается в том, что электрические токи, порожденные циркуляцией жидких металлов в земной коре, в свою очередь, генерируют магнитное поле.
Так, жизнь на Земле обязана своим существованием этому защитному магнитному экрану. Но его польза для живых существ этим не ограничивается; ученые уже более века знают, что многие виды развили оригинальные способы ее использования. Так же как моряки используют магнитное поле Земли в течение тысяч лет, чтобы перейти океаны, многие другие обитатели Земли, в том числе морские и наземные млекопитающие, птицы (подобные нашей малиновке) и насекомые, в течение миллионов лет развили чувство, которое обнаруживает магнитное поле Земли, чтобы использовать его для навигации.
Самые ранние свидетельства о такой способности были представлены российским зоологом Александром фон Миддендорфом (1815–1894), который записывал места и даты прибытия нескольких видов перелетных птиц. На основании этих данных он нанес на карту ряд кривых, которые он назвал «изопиптезы» (линии одновременного прилета). По этой карте, отражавшей направления прилета птиц, он обнаружил тенденцию «сближения линий к северу», в направлении Северного магнитного полюса. Когда он опубликовал свои выводы в 1850 году, он предположил, что перелетные птицы ориентируются по магнитному полю Земли, используя его как «воздушные мореплаватели», которые могут перемещаться «несмотря на ветер, погоду, ночь и облачность»[88].
Большинство других биологов XIX века относились к этим выводом скептически. Парадоксально, что даже те ученые, которые были готовы принять более диковинные псевдонаучные явления вроде паранормальной активности — а многие видные ученые конца XIX века действительно их признавали, — не могли поверить, что магнитное поле влияет на жизнь. К примеру, Джозеф Ястров, американский психолог и исследователь психологии, в июле 1886 года опубликовал письмо в журнале Science , озаглавленное «Существование магнитной чувствительности». Он описал эксперименты, которые провел с целью проверки, могут ли люди так или иначе чувствовать магнитное поле, но сообщил, что вообще не обнаружил какой-либо чувствительности.
Тем не менее если вы оставите Ястрова с его мыслями позади и пойдете дальше, то в XX веке вы сможете найти работу Генри Йигли, американского физика, проводившего исследования для войск связи армии США во время Второй мировой войны. Навигация птиц представляла интерес для военных, так как почтовых голубей по-прежнему использовали для передачи сообщений и авиационные инженеры надеялись узнать об их навигационных способностях. Тем не менее, как именно птицам удавалось находить свой путь домой столь безошибочно, так и оставалось загадкой. Йигли разработал теорию о том, что почтовые голуби чувствуют как вращение Земли, так и ее магнитное поле. Это, по его словам, позволяет создавать «навигационную сеть» в птичьем мозге, давая ему координаты широты и долготы. Он даже проверил свою теорию, присоединив небольшие магниты к крыльям десяти голубей и немагнитных медных полосок того же веса — к крыльям десяти других. Восемь из десяти птиц с медными полосками, прикрепленными к крыльям, нашли свой путь домой, но только одному из десяти голубей с магнитами удалось вернуться в гнездо. Йигли пришел к выводу, что птицы используют для ориентирования магнитную навигационную чувствительность, которая могла быть нарушена прикрепленными магнитами[89].
Хотя результаты эксперимента Йигли были первоначально отклонены как надуманные, некоторые исследователи также не ставили под сомнение тот факт, что многие животные обладают чувствительностью к магнитному полю Земли и это позволяет им остро чувствовать направление. Морские черепахи, например, могут вернуться к пляжу, на котором родились, через тысячи километров от места кормежки в океане без каких-либо визуальных ориентиров; и исследователи показали, что навигационное чувство снижается, если к их головам прикрепить мощные магниты. В 1997 году команда из Университета Окленда в Новой Зеландии опубликовала исследование в журнале Nature с предположением, что радужная форель использует клетки магнитных рецепторов, расположенных в носу[90]. Если это подтвердится, это будет первый пример вида, который способен «унюхать» направление магнитного поля Земли! Микробы используют магнитное поле Земли, чтобы ориентироваться в мутной воде; и даже организмы, которые не мигрируют, такие как растения, по всей видимости, сохранили чувство магниторецепции.
Способность животных к обнаружению магнитного поля Земли больше не вызывает сомнений. По-прежнему тайной остается лишь то, как они это делают, не в последнюю очередь потому, что магнитное поле Земли является чрезвычайно слабым и вряд ли может влиять на какие-либо химические реакции в организме. Есть две основные теории, и обе, вероятно, будут верны для разных видов животных. Первая состоит в том, что магнитная чувствительность функционирует по принципу обычного магнитного компаса, а вторая — в том, что магниторецепция сродни «химическому компасу».
Первая теория — о том, что в той или иной форме обычный механизм компаса находится где-то в теле животного, была подкреплена открытием крошечных кристаллов магнетита, природного минерала оксида железа, у многих животных и микроорганизмов, что, вероятно, и обеспечивает их магнитную чувствительность. Например, бактерии, которые используют магнитную чувствительность для того, чтобы ориентироваться в мутных морских отложениях, часто содержат продолговатые кристаллы магнетита.
К концу 1970 года магнетит был обнаружен в телах различных видов животных, способных к навигации по магнитному полю Земли. Примечательно, что магнетит был найден внутри нейронов в верхней части клюва самых известных птичьих навигаторов — почтовых голубей[91]. Предположительно нейроны реагируют на магнитные сигналы, улавливаемые кристаллами магнетита, а затем посылают сигнал в мозг животного. Более поздние исследования показали, что голуби были дезориентированы и утрачивали способность отслеживать геомагнитное поле, когда маленькие магниты были прикреплены к верхним частям их клювов, где эти богатые магнетитом нейроны, по-видимому, и расположены. Казалось, что источник животной магниторецепции наконец-то удалось локализовать[92].
Тем не менее пришлось снова вернуться к исходной точке в 2012 году, когда еще одна работа была опубликована в Nature . Она описывала подробное 3D-изучение клюва голубя с использованием метода МРТ. Исследование показало, что магнетит в клетках клюва голубя почти наверняка не имеет ничего общего с магниторецепцией. На самом деле богатые железом клетки, называемые макрофагами, участвуют в выработке иммунитета к патогенам, но, насколько известно, не влияют на чувствительность к магнитному полю[93].
И вот как раз сейчас наступает самый подходящий момент для того, чтобы вернуться к выдающемуся немецкому орнитологу Вольфгангу Вильчко, с которым мы познакомились в главе 1. Интерес Вильчко к птичьей навигации разгорелся в 1958 году, когда он присоединился к исследовательской группе во Франкфурте под руководством орнитолога Фрица Меркеля. Меркель был одним из немногих ученых, которые в то время изучали магнитную чувствительность животных. Один из его учеников, Ганс Фромм, уже показал, что некоторые птицы могут ориентироваться внутри пустых закрытых помещений. Это доказывало, что их навигационные способности не были основаны на визуальных ориентирах. Фромм предположил два возможных механизма: либо птицы получали какие-то радиосигналы от звезд, либо же они могли чувствовать магнитное поле Земли. Вольфганг Вильчко склонялся ко второй версии.
Осенью 1963 года Вильчко начал проводить эксперименты с европейскими малиновками, которые, как вы помните, обычно мигрируют между Северной Европой и Северной Африкой. Он поместил малиновок, пойманных в середине миграции, внутрь специальных камер, защищенных от магнитного излучения. Затем он подвергал птиц воздействию слабого искусственного статического магнитного поля, генерируемого устройством под названием «катушка Гельмгольца», которое может имитировать геомагнитное поле, но силу и направление которого можно изменять. Он обнаружил, что птицы, отловленные во время миграции, осенью или весной становились беспокойными и группировались с той стороны камеры, которая совпадала с направлением искусственного поля. После двух лет кропотливых усилий, в 1965 году, он опубликовал результаты, демонстрирующие, что птицы чувствительны к направлению наведенного поля и, соответственно, как он полагал, могут аналогично обнаруживать и магнитное поле Земли.
Эти эксперименты придали больший авторитет идее птичьей магниторецепции и дали толчок дальнейшим исследованиям. Но в то же время никто не имел ни малейшего представления, как это чувство работает: как чрезвычайно слабое магнитное поле Земли действительно может влиять на органы животных? Ученые не могли даже договориться о том, где в теле животных расположен чувствительный орган, отвечающий за магниторецепцию. Даже после того, как кристаллы магнетита были найдены у некоторых видов животных, подтверждая идею работы механизма обычного магнитного компаса, навигационная способность малиновки оставалась загадкой, потому что в ее теле магнетит обнаружен не был. Чувствительность малиновки также имеет некоторые необъяснимые особенности, которые не согласуются с принципом работы магнитного компаса; например, удивительно то, что птицы теряли способность, когда им завязывали глаза, указывая на то, что они должны «видеть» магнитное поле Земли. Но как животные могут видеть магнитное поле?
В 1972 году Вильчко (Вольфганг к тому времени стал работать в команде со своей женой Розвитой) обнаружили, что компас малиновки отличается от всех ранее изученных. Обычный компас имеет намагниченную иглу, один конец которой (ее южный полюс) притягивается к Северному магнитному полюсу Земли, а обратный конец — к Южному. Но есть и другой вид компаса, который не делает различий между магнитными полюсами. Такой компас, как вы помните из главы 1, называется инклинометром, он указывает на то, какой полюс находится ближе, и показывает, удаляетесь вы от полюса или приближаетесь к нему, но не указывает, к какому именно. Одним из способов получения такого рода информации является измерение угла между силовыми линиями магнитного поля и поверхностью Земли (рис. 6.1).
Рис. 6.1. Линии магнитного поля Земли и угол магнитного наклонения
Этот угол магнитного наклонения (inclination angle — отсюда и название для такого рода компаса) является почти вертикальным (указывает на землю) близко к полюсам и параллельно земле на экваторе. Между экватором и полюсами магнитные силовые линии проходят под острым углом к поверхности, достигая 90° на ближайшем полюсе. Таким образом, любое устройство, которое измеряет этот угол, может выступать в качестве инклинометра и обеспечивать информацию о направлениях.
В своих экспериментах в 1972 году Вильчко поместили птиц в защищенную от геомагнитного поля камеру и подвергли их воздействию искусственного магнитного поля. Что отличает этот эксперимент от предыдущих, так это то, что они поменяли полярность, повернув магнит на 180°, но это не оказало никакого влияния на поведение птиц: они ориентируются по отношению к ближайшему магнитному полюсу, каким бы он ни оказался, поэтому их чувствительность нельзя объяснять принципом обычного магнитного компаса. Исследование 1972 года показало, что магниторецепция малиновки работает по принципу инклинометра. Но как именно она работает, так и осталось загадкой.
Затем в 1974 году Вольфганг и Розвита были приглашены в Корнелльский университет в США американским экспертом по миграции птиц Стивом Эмленом. В 1960 году он разработал вместе со своим отцом Джоном, также весьма уважаемым орнитологом, специальную камеру для птиц, которая известна как воронка Эмлена[94]. Воронка имеет форму перевернутого конуса со штемпельной подушечкой на дне и промокательной бумагой на внутренних наклоненных сторонах (рис. 6.2).
Рис. 6.2. Воронка Эмлена
Когда птица подпрыгивает или пытается взобраться по наклонной стенке, она оставляет видимые следы, которые дают информацию о предпочтительном направлении, в котором бы она полетела, если бы смогла выбраться. Среди видов птиц, которых изучали Вильчко в Корнельском университете, был индиговый овсянковый кардинал, небольшая североамериканская певчая птица, которая, как и европейская малиновка, мигрирует с помощью внутреннего компаса. Результаты годичного изучения поведения этой птички внутри воронки Эмлена были опубликованы в 1976 году[95]. Было установлено, что индиговый овсянковый кардинал, несомненно, как и малиновка, может обнаруживать геомагнитное поле. Вольфганг Вильчко считает, что эта первая публикация о корнельских исследованиях стала настоящим прорывом для его команды, потому что она развеяла все сомнения в том, что мигрирующие птицы имеют встроенный магнитный компас, и привлекла внимание многих ведущих орнитологов мира.
Конечно, никто в середине 1970-х годов не имел понятия, как именно работает биологический магнитный компас. Однако, как мы видели в главе 1, в том же году, в котором Вильчко и Стивен Эмлен опубликовали свою работу, немецкий химик Клаус Шультен предложил объяснение химического механизма, который связывает свет с магниторецепцией. Окончив Гарвард, Шультен с докторской степенью в области химической физики вернулся в Европу, где получил должность в Институте биофизической химии Макса Планка в Геттингене. Там он заинтересовался возможностью электронов, генерируемых в быстрой триплетной реакции под воздействием света, становиться квантово-запутанными. Его расчеты показали, что если запутанность действительно участвует в химических реакциях, то на скорость этих реакций должно влиять внешнее магнитное поле, и предложил способ доказательства своей теории.
Поскольку Шультен свободно говорил о своей новой идее, он заработал в Институте Макса Планка репутацию сумасшедшего. Его проблема заключалась в том, что он был физиком-теоретиком, который работал с бумагой, ручкой и компьютером, а не химиком. Не будучи практикующим химиком, он просто не мог надеть лабораторный халат и собственноручно провести эксперимент, который доказал бы его идеи. Таким образом, он был в положении, знакомом многим теоретикам, которым в голову пришла отличная идея. Им нужно найти дружески настроенного экспериментатора, готового взять тайм-аут в своем напряженном графике работы в лаборатории, чтобы проверить теорию, которая, как правило, оказывается неверной. Шультену не везло, он никак не мог убедить кого-либо из коллег-химиков опробовать свою идею, потому что никто из них не считал, что его эксперимент имеет хоть какие-то шансы на успех.
Источником этого коллективного скептицизма, как потом выяснил Шультен, был руководитель лаборатории Института Губерт Старк. В конце концов Шультен набрался смелости поговорить со Старком с глазу на глаз и найти наконец корни этого укоренившегося скептицизма: оказалось, Старк уже проводил подобный эксперимент и не обнаружил никакого влияния магнитного поля. Шультен был поражен. Казалось, что его гипотезу могла постигнуть участь, описанная эволюционным биологом Томасом Гексли: «Уродливый факт способен погубить прекрасную гипотезу».
Поблагодарив Старка за проведение эксперимента, удрученный Шультен собирался было покинуть свой пост, но потом вернулся и попросил разрешения посмотреть на разочаровывающие данные. Когда Старк показал ему материалы, настроение Шультена внезапно поднялось. Он заметил что-то, что пропустил Старк: небольшое, но значимое отклонение в данных, которое он и предсказывал. Он сказал, что это было «именно то, чего я ожидал, и поэтому я был очень рад, что я увидел это. Катастрофа превратилась в счастливый момент, потому что я знал, что искать. А Старк не знал»[96].
Шультен немедленно засел за работу, которая обещала стать настоящим научным прорывом. Но вскоре он получил еще один шок. За чашечкой кофе с коллегой Марией-Элизабет Мишель-Байерле на конференции в Техническом университете Мюнхена он выяснил, что Мишель-Байерле провела точно такой же эксперимент. Это поставило Шультена в этически затруднительное положение. Он мог рассекретить свое открытие и потенциально подсказать Мишель-Байерле срочно вернуться в Мюнхен, чтобы написать свою собственную работу, которая сделает его публикацию бессмысленной; или он мог бы извиниться и быстро поехать обратно в Геттинген, чтобы записать свои собственные результаты. Но если бы он сбежал, не говоря ни слова, а затем опубликовал работу первым, Мишель-Байерле могла бы впоследствии обвинить его в том, что он украл ее идею. Он вспоминает свои мысли: «Если я сейчас не скажу, что я проводил аналогичные исследования, то она может сказать, что я пошел домой, чтобы сделать эксперимент»[97]. В конце концов Шультен признался Мишель-Байерле, что он проделал аналогичную работу. Оба ученых остались до окончания конференции, а затем вернулись каждый к себе домой, чтобы написать свои собственные работы (работа Шультена появилась чуть раньше), описывающие открытия влияния квантовой запутанности на химические реакции.
В работе Шультена[98]1976 года содержалось предположение о том, что квантовая запутанность влияет на скорость необычных быстрых триплетных реакций, сделанное на основании исследований в лаборатории Макса Планка; но его новаторская работа также содержала экспериментальные данные Старка, которые ясно показали, что химическая реакция была чувствительна к воздействию магнитных полей. С двумя большими результатами «2 в 1» многие ученые были бы удовлетворены, но Шультен, еще не достигший 30, обладал безрассудством молодости и был готов лезть на рожон и дальше. Изучив работы Вильчко по миграциям малиновки, где была поставлена задача нахождения правдоподобного химического механизма биологического компаса, он понял, что его вращающиеся электроны могли бы обеспечить такой механизм; и в статье 1978 года он предположил, что птичий компас зависит от механизма взаимодействия пар квантово-запутанных частиц.
В то время вряд ли кто-то воспринял эту идею всерьез. Коллеги Шультена из Института Макса Планка считали ее просто еще одной из его сумасшедших теорий, и редакторы Science , ведущего научного журнала, куда он отправил статью в первую очередь, были столь же мало впечатлены, написав: «Менее смелый ученый отправил бы это в мусорную корзину»[99]. Шультен описывает свою реакцию: «Я почесал голову и подумал: это либо отличная идея, либо полная чушь! Я решил, что это отличная идея, и быстро опубликовал ее в одном немецком журнале!»[100]. Но на данном этапе большинство ученых из тех, которые вообще об этом узнали, поместили теорию Шультена в один ряд с псевдонаучными и паранормальными объяснениями магниторецепции.
Прежде чем мы сможем увидеть, как работы Шультена и Вильчко помогают объяснить нахождение птицами своего пути вокруг земного шара, необходимо вернуться к загадочному квантовому миру и внимательно рассмотреть явление запутанности, которое мы вкратце описывали в главе 1 этой книги. Возможно, вы помните, что запутанность настолько удивительна, что даже Эйнштейн настаивал, будто бы она не может быть правильной. Но сначала мы должны познакомить вас с еще одной неотъемлемой составляющей квантового мира — спином.