Описание движения жидкости и газа

В отличие от материальных точек, когда для описания их движения задавались координаты этих точек, а затем определялись их скорости и ускорения, для описания движения жидкости применяется несколько иной метод. Развитие этого метода связано с практическими успехами гидро- и аэродинамики. Аналитические формулы, описывающие движения тел в жидкости, очень громоздки, к тому же они содержат большое количество параметров. На практике более эффективным оказался метод моделирования, когда уменьшенные модели самолетов и судов в неподвижном состоянии помещались в аэродинамические трубы или испытательные бассейны. При этом измерялись скорости и ускорения потока жидкости или газа в различных точках испытываемой модели. При таком методе описания движения жидкости или газа измеряется не скорость (ускорение) различных частиц, а скорости и ускорения в некоторых фиксированных точках, через которые проходят отдельные частицы (или отдельные выделенные малые объемы). Если в любой такой выбранной точке значения скорости (или ускорения) не меняются с течением времени, то такое движение называется стационарным.

Обычно различают два типа движения жидкости: ламинарное и турбулентное. При ламинарном течении жидкость перемещается слоями, причем один слой скользит по другому, но слои не перемешиваются между собой, в турбулентном же движении наиболее характерным признаком является наличие вихрей.

Характер движения на первый взгляд зависит от величины скорости жидкости, но в действительности важную роль играют и другие факторы, в частности, вязкость или внутреннее трение. Это свойство органически присуще почти всем реальным жидкостям и является следствием взаимодействия молекул между собой. При ламинарном движении слои жидкости с трением скользят друг по другу. Чем сильнее силы сцепления между частицами жидкости, тем больше различие скоростей двух соседних слоев. Иначе говоря, степень быстроты изменения скорости слоев жидкости при перемещении перпендикулярно ее движению характеризует величину силы трения между слоями. Если же в жидкости движется твердое тело, то слой жидкости, непосредственно к нему прилегающий, движется с ним вместе, следующий слой скользит по первому слою с меньшей скоростью, следующий за вторым слой имеет еще меньшую скорость и т.д. Слой же, граничащий со стенками, ограничивающими поток жидкости, прилипает к стенкам так, что его скорость равна нулю. Величина силы трения при движении тела в жидкости установлена еще Ньютоном, который нашел ее аналитическое выражение:

Описание движения жидкости и газа - student2.ru , (9.1)

где первый сомножитель характеризует вязкость жидкости (коэффициент вязкости), второй отражает быстроту изменения скорости в направлении, перпендикулярным потоку (производная по направлению), и третий представляет площадь соприкосновения жидкости и тела, т.е. зависит от формы тела. Очевидно, что величина силы трения для каждого тела имеет свою определенную величину, но конкретный учет всех особенностей тела связан с серьезными математическими трудностями. Наиболее простой вид силы трения получается при движении шара:

Описание движения жидкости и газа - student2.ru (9.2)

где r - радиус шара, v - его скорость, h - коэффициент вязкости. Это выражение впервые получено Стоксом и известно как формула Стокса.

Степень влияния вязкости на характер движения жидкости можно оценить, если сравнить величину кинетической энергии движущегося тела с работой сил вязкого трения. Эта оценка производится весьма приближенно, c точностью до численных коэффициентов. Для обтекания вязкой жидкостью неподвижного шара величина кинетической энергии жидкости оценивается в предположении, что объем жидкости, где происходит возмущение потока, по своей величине примерно равен объему шара, так что величина кинетической энергии этого объема примерно равна:

Екин = Описание движения жидкости и газа - student2.ru ~ rжl3 υ2, (9.3)

где l - линейные размеры шара. Для оценки величины работы силы вязкого трения предположим, что площадь поверхности шара S ~ l2, и изменение скорости от значения υ до нуля также происходит на расстоянии l, т.е. Dυ ~ υ, Dz ~ l и

Fтр ~ h Описание движения жидкости и газа - student2.ru l2 ~ hυl , (9.4)

откуда следует, что работа силы трения Атр равна:

Атр ~ Fтр l ~ hυl 2. (9.5)

Сравнивая (9.3 ) и (9.5), нетрудно получить:

Описание движения жидкости и газа - student2.ru ~ Описание движения жидкости и газа - student2.ru ~ Описание движения жидкости и газа - student2.ru = Re. (9.6)

Подобные рассуждения можно провести для тела любой формы, поэтому безразмерная величина Re (9.6), получившая название числа Рейнольдса, позволяет оценить влияние вязкости жидкости на характер ее движения. Если число Рейнольдса велико, то трением в жидкости можно пренебречь и считать жидкость идеальной. Хотя введение числа Рейнольдса проведено в некотором приближении, тем не менее, по его величине можно судить не только о роли трения, но и о характере движения жидкости. Так, например, при Re ~ 1000 движение жидкости в трубах остается ламинарным, но при Re ~ 2200 оно становится турбулентным. При малых значениях чисел Рейнольдса роль вязкости жидкости достаточно велика и вихревого движения возникнуть не может.

Уравнение неразрывности

Как уже отмечалось, при стационарном движении жидкости (или газа) скорость ее частиц не изменяется с течением времени. Для наглядности вводится понятие линии тока, которые представляют собой линии, касательные к которым в любой точке совпадают по направлению с вектором скорости в этой же точке. В случае стационарного движения линии тока неподвижны и Описание движения жидкости и газа - student2.ru совпадают с траекториями частиц жидкости. Кроме того, для облегчения изучения движения жидкости вводится понятие трубки тока. Эти трубки образуются так, что линия тока, проходящая через какую-либо точку, лежащую на поверхности трубки тока, целиком лежит на этой поверхности (см. рис. 9.1). При стационарном течении жидкости стенки трубки тока неподвижны. Жидкость, вошедшая в трубку, в дальнейшем движется все время внутри нее. Поэтому выделенную трубку можно рассматривать независимо от остальной жидкости.

Предположим, что выделенная трубка тока настолько тонка, что в каждой точке ее поперечного сечения величину скорости частиц жидкости можно было бы считать одинаковой. Пусть в сечении S1 (рис. 9.1) скорость частиц жидкости равна v1. За промежуток времени Dt через сечение пройдет объем жидкости V1= v1Dt S1. Если плотность жидкости в этом сечении равна r1, то через сечение проходит масса m1 = r1V1 = r1υ1Dt S1. Аналогично через сечение S2 за время Dt проходит масса m2 = r2υ2Dt S2. При стационарном движении количество вещества, проходящее через сечения S1 и S2 , должно быть одинаковым, т.е. m1= m2. Поэтому r1υ1Dt S1 = r2υ2Dt S2. При несжимаемости жидкости r1= r2 , откуда следует, что υ1 S1 = υ2 S2 , или в общем виде

υS = const . (9.7)

Выражение (9.7) носит название уравнения неразрывности. Примером проявления свойств жидкости, описываемых этим уравнением, может служить течение рек: в узких местах скорость течения возрастает и, наоборот, в широких местах скорость течения становится меньше.


Наши рекомендации