Химический состав нервной ткани. Особенности ее метаболизма.
Химический состав нервной ткани сложен и неоднороден. В сером веществе 77 -81% воды, в белом-70%. Содержание белков в нервной ткани меньше, чем в некоторых других тканях (печень, мышцы). Их больше в сером веществе и меньше в периферических нервах. В нервной ткани содержится больше сложных белков: липопротеины (миелиновые оболочки), фосфопротеины, нуклеопротеины (днп, рнп), гликопротеины (нейрокератин). Липидов в сером веществе 25%, в белом веществе 50%. фосфолипиды (до 50%) - плазмоген ацетальфосфатиды. гликолипиды - цереброзиды, ганглиозиды. Холестерин (25%) в свободном виде. Минеральные вещества представлены катионами калия, натрия, кальция, магния, железа, меди, цинка, в качестве анионов выступают анионы белков и фосфаты.
Центральной функциональной клеткой нервной ткани является нейрон, который связан с помощью дендритов и аксонов с такими же клетками и клетками других типов, например, с секреторными и мышечными клетками. Клетки разделены синаптическими щелями. Связь между клетками осуществляется путем передачи сигнала. Сигнал проходит от тела нейрона по аксону до синапса. В синаптическую щель выделяется вещество – медиатор. Медиатор вступает в связь с рецепторами на другой стороне синаптической щели. Это обеспечивает восприятие сигнала и генерацию нового сигнала в клетке – акцепторе.
К функциям нервной ткани относятся: генерация электрического сигнала (нервного импульса); проведение нервного импульса; запоминание и хранение информации; формирование эмоций и поведения; мышление.
Специфику нервной ткани определяет гематоэнцефалический барьер (ГЭБ). Гематоэнцефалический барьер имеет избирательную проницаемость для различных метаболитов, а также способствует накоплению некоторых веществ в нервной ткани. Таким образом, нервная ткань отличается по химическому составу от других тканей.
Большая часть липидов нервной ткани находится в составе плазматических и субклеточных мембран нейронов и в миелиновых оболочках. В нервной ткани по сравнению с другими тканями организма содержание липидов очень высокое. В липидный состав нервной ткани входят: фосфолипиды, гликолипиды и холестерин и нет нейтральных жиров. Эфиры холестерина находятся только в участках активной миелинизации. Сам холестерин синтезируется интенсивно только в развивающемся мозге. В мозге взрослого человека низка активность ГМГ-КоА-редуктазы – ключевого фермента синтеза холестерина. Содержание свободных жирных кислот в мозге очень низкое.
Функции липидовнервной ткани: 1. Структурная. Липиды входят в состав клеточных мембран нейронов. 2. Функция диэлектриков. 3. Защитная. Ганглиозиды являются активными антиоксидантами – ингибиторами перекисного окисления липидов. При повреждении ткани мозга ганглиозиды способствуют ее заживлению. 4. Регуляторная. Фосфатидилинозиты являются предшественниками биологически активных веществ.
Нервные клетки не делятся, следовательно, в них не происходит синтез ДНК. Однако содержание РНК в них самое высокое по сравнению с клетками остальных тканей организма. Скорость синтеза РНК тоже очень велика. В клетках нервной ткани не могут синтезироваться пиримидины, т.к. в нервной ткани отсутствует фермент карбамоилфосфатсинтетаза. Пиримидины обязательно должны поступать из крови – гематоэнцефалический барьер для них проницаем. Гематоэнцефалический барьер легко проницаем и для пуриновых мононуклеотидов, но, в отличие от пиримидиновых, они могут синтезироваться в нервной ткани.
Нуклеиновые кислоты в нервной ткани обеспечивают хранение и передачу генетической информации и ее реализацию при синтезе клеточных белков. В нервной ткани, составляющей только 2% от массы тела человека, потребляется 20% кислорода, поступающего в организм, при этом энергетические возможности нервной ткани ограничены.
Метаболизм углеводов.Основной путь получения энергии – только аэробный распад глюкозы. Глюкоза является почти единственным энергетическим субстратом, поступающим в нервную ткань, который может быть использован ее клетками для образования АТФ. Проникновение глюкозы в ткань мозга не зависит от действия инсулина, который не проникает через гематоэнцефалический барьер. Влияние инсулина проявляется лишь в периферических нервах. Содержание гликогена в нервной ткани ничтожно и не может обеспечить мозг энергий даже на короткое время. С другой стороны, окисления неуглеводных субстратов с целью получения энергии не происходит. Поэтому при гипогликемии и/или даже кратковременной гипоксии в нервной ткани образуется мало АТФ. Следствием этого является быстрое наступление коматозного состояния и необратимые изменения в ткани мозга.
Высокая скорость потребления глюкозы нервными клетками обеспечивается, в первую очередь, работой высокоактивной гексокиназы мозга. В отличие от других тканей, здесь гексокиназа не является ключевым ферментом всех путей метаболизма глюкозы. Ключевыми ферментами являются фосфофруктокиназа и изоцитратдегидрогеназа.
Образование НАДФН2, который используется в нервной ткани в основном для синтеза жирных кислот и стероидов, обеспечивается сравнительно высокой скоростью протекания пентозофосфатного пути распада глюкозы.
Функционирование нервной ткани сопровождается резкими перепадами в употреблении энергии. Резкое повышение энергозатрат происходит при очень быстром переходе от сна к бодрствованию. Во время сна накапливается креатинфосфат. Переход к бодрствованию приводит к резкому уменьшению концентрации АТФ. Происходит образование АТФ из креатинфосфата.
Метаболизм аминокислот и белков. Ткань мозга интенсивно обменивается аминокислотами с кровью. Для этого существуют специальные транспортные системы - две для незаряженных аминокислот и еще несколько - для аминокислот, заряженных положительно и отрицательно. До 75% от общего количества аминокислот нервной ткани составляют аспартат и глутамат, а также продукты их превращения или вещества, синтезированные с их участием (глутамин, ацетильные производные, глутатион, ГАМК и др.). Глутаминовая кислота связана большим числом реакций с промежуточными метаболитами ЦТК (энергетическая функция). Глутамат (вместе с аспартатом) принимает участие в реакциях дезаминирования других аминокислот и временном обезвреживании аммиака. Из глутамата образуется нейромедиатор ГАМК. Он принимает участие в синтезе глутатиона – одного из компонентов антиоксидантной системы организма.
Образуется глутамат из своего кетоаналога - α-кетоглутаровой кислоты в ходе реакции трансаминирования. Большое расходование α-кетоглутаровой кислоты восполняется за счет превращения аспарагиновой кислоты в метаболит ЦТК - оксалоацетат.
Образующаяся из глутамата ГАМК в результате нескольких реакций может быть превращена снова в оксалоацетат. Так образуется ГАМК-шунт, имеющийся в тканях головного и спинного мозга. Поэтому в этих тканях содержание ГАМК, как промежуточного метаболита циклического процесса, значительно выше, чем в остальных. На образование ГАМК здесь используется до 20% от общего количества глутамата.
Остальные пути метаболизма аминокислот сходны с имеющимися в других тканях. Ткань мозга способна синтезировать заменимые аминокислоты, как и другие ткани. До сих пор непонятным остается наличие в мозге почти полного набора ферментов орнитинового цикла, не содержащего карбамоилфосфатсинтазы, из-за чего мочевина здесь не образуется.
131. Химические основы возникновения и проведения нервных импульсов. Холинергические и адренергические синапсы. Нейромедиаторы; их структура, роль, образование и превращения.
Нейромедиаторы – это вещества, которые характеризуются следующими признаками: - накапливаются в пресинаптической мембране в достаточной концентрации; - освобождаются при передаче импульса; - вызывают после связывания с постсинаптической мембраной изменение скорости метаболических процессов и возникновение электрического импульса; - имеют систему для инактивации или транспортную систему для удаления из синапса продуктов гидролиза.
Нейромедиаторы играют важную роль в функционировании нервной ткани, обеспечивая синаптическую передачу нервного импульса. Их синтез происходит в теле нейронов, а накопление в особых везикулах, которые постепенно перемещаются с участием систем нейрофиламентов и нейротрубочек к кончикам аксонов. К нейромедиаторам относятся производные аминокислот: таурин, норадреналин, дофамин, ГАМК, глицин, ацетилхолин, гомоцистеин и некоторые другие (адреналин, серотонин, гистамин), а также нейропетиды.
Холинэргические синапсы
Ацетилхолин синтезируется из холина и ацетил-КоА. Для синтеза холина требуются аминокислоты серин и метионин. Но, как правило, из крови в нервную ткань поступает уже готовый холин. Ацетилхолин участвует в синаптической передаче нервного импульса. Он накапливается в синаптических пузырьках, образуя комплексы с отрицательно заряженным белком везикулином Передача возбуждения с одной клетки на другую осуществляется с помощью специального синаптического механизма.
Рис. 22. Холинэргический синапс
Синапс – это функциональный контакт специализированных участков плазматических мембран двух возбудимых клеток. Синапс состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны. Мембраны в месте контакта имеют утолщения в виде бляшек – нервных окончаний. Нервный импульс, достигший нервного окончания, не в состоянии преодолеть возникшее перед ним препятствие - синаптическую щель. После этого электрический сигнал преобразуется в химический. Пресинаптическая мембрана содержит специальные канальные белки, они реагируют на мембранный потенциал, изменяя свою конформацию, и формируют канал. В результате ионы Са2+ проходят через пресинаптическую мембрану по градиенту концентраций в нервное окончание. Градиент концентраций Са2+ создается работой Са2+-зависимой АТФазы. Повышение концентрации Са2+ внутри нервного окончания вызывает слияние имеющихся там везикул, заполненных ацетилхолином. Затем ацетилхолин секретируется в синаптическую щель путем экзоцитоза и присоединяется к рецепторным белкам, расположенным на поверхности постсинаптической мембраны.Ацетилхолиновый рецептор - комплекс, состоящий из 6 субъединиц. Пространственная структура рецептора строго соответствует конформации медиатора. При взаимодействии с ацетилхолином белок-рецептор так изменяет свою конформацию, что внутри него формируется натриевый канал. Катионная селективность канала обеспечивается тем, что ворота канала сформированы отрицательно заряженными аминокислотами. Т.о. повышается проницаемость постсинаптической мембраны для натрия и возникает импульс (или сокращение мышечного волокна). Деполяризация постсинаптической мембраны вызывает диссоциацию комплекса «ацетилхолин-белок-рецептор», и ацетилхолин освобождается в синаптическую щель. Как только ацетилхолин оказывается в синаптической щели, он за 40 мкс подвергается быстрому гидролизу под действием фермента ацетилхолинэстеразы на холин и ацетил-КоА.
Необратимое ингибирование ацетилхолинэстеразы вызывает смерть. Ингибиторами фермента являются фосфорорганические соединения. Смерть наступает в результате остановки дыхания. Обратимые ингибиторы ацетилхолинэстеразы используются как лечебные препараты, например, при лечении глаукомы и атонии кишечника.
Адренэргические синапсывстречаются в постганглионарных волокнах, в волокнах симпатической нервной системы, в различных отделах головного мозга. Медиаторами в них служат катехоламины: норадреналин и дофамин. Катехоламины в нервной ткани синтезируются по общему механизму из тирозина. Ключевой фермент синтеза – тирозингидроксилаза, ингибируемая конечными продуктами.
Рис. 23. Адренэргический синапс
Норадреналин – медиатор в постганглионарных волокнах симпатической системы и в различных отделах ЦНС.
Дофамин – медиатор проводящих путей, тела нейронов которого расположены в отделе мозга. Катехоламины, как и ацетилхолин, накапливаются в синаптических пузырьках и тоже выделяются в синаптическую щель при поступлении нервного импульса. Но регуляция в адренергическом рецепторе происходит иначе. В пресинаптической мембране имеется специальный регуляторный белок – ахромогранин, который в ответ на повышение концентрации медиатора в синаптической щели связывает уже выделившийся медиатор и прекращает его дальнейший экзоцитоз. Фермента, разрушающего медиатор, в адренергических синапсах нет. После передачи импульса молекулы медиатора перекачиваются специальной транспортной системой путем активного транспорта с участием АТФ обратно в пресинаптическую мембрану и включаются вновь в везикулы. В пресинаптическом нервном окончании излишек медиатора может быть инактивирован моноаминооксидазой (МАО), а также катехоламин-О-метилтрансферазой (КОМТ) путем метилирования по оксигруппе.
Передача сигнала в адренергических синапсах протекает с участием аденилатциклазной системы. Связывание медиатора с постсинаптическим рецептором почти мгновенно вызывает повышение концентрации цАМФ, что приводит к быстрому фосфорилированию белков постсинаптической мембраны. В результате тормозится генерация нервных импульсов постсинаптической мембраны. В некоторых случаях непосредственной причиной этого является повышение проницаемости постсинаптической мембраны для калия, либо снижение проводимости для натрия (такое состояние приводит к гиперполяризации).
Тауринобразуется из аминокислоты цистеина. Сначала происходит окисление серы в HS-группе (процесс идет в несколько стадий), затем происходит декарбоксилирование. Таурин – это необычная кислота, в которой нет карбоксильной группы, а имеется остаток серной кислоты. Таурин принимает участие в проведении нервного импульса в процессе зрительного восприятия.
ГАМК – тормозной медиатор (около 40% нейронов). ГАМК повышает проницаемость постсинаптических мембран для ионов калия. Это ведет к изменению мембранного потенциала. ГАМК тормозит запрет на проведение «ненужной» информации: внимание, двигательный контроль.
Глицин – вспомогательный тормозной медиатор (менее 1% нейронов). По вызываемым эффектам подобен ГАМК. Его функция - торможение мотонейронов.
Глутаминовая кислота - главный возбуждающий медиатор (около 40% нейронов). Основная функция: проведение основных потоков информации в ЦНС (сенсорные сигналы, двигательные команды, память).
Нормальная деятельность ЦНС обеспечивается тонким балансом глутаминовой кислоты и ГАМК. Нарушение этого баланса (как правило, в сторону уменьшения торможения) негативно влияет на многие нервные процессы. При нарушении баланса развивается синдром дефицита внимания и гиперактивности детей (СДВГ), повышается нервозность и тревожность взрослых, нарушение сна, бессонница, эпилепсия.
Нейропептиды имеют в своем составе от трех до нескольких десятков аминокислотных остатков. Функционируют только в высших отделах нервной системы. Эти пептиды выполняют функцию не только нейромедиаторов, но и гормонов. Они передают информацию от клетки к клетке по системе циркуляции. К ним относятся:- нейрогипофизарные гормоны (вазопрессин, либерины, статины) - гастроинтестинальные пептиды (гастрин, холецистокинин). - опиатоподобные пептиды (или пептиды обезболивания).