Морфология и физиология микробов микроскопический метод исследования. морфология бактерий.
Световой микроскоп с иммерсионной системой
Для изучения микробов в микроскопе требуется увеличение примерно в 1000 раз, поэтому используются микроскопы с иммерсионной системой ("иммерсио" - погружение). Иммерсионная система включает: иммерсионный объектив (х90) и иммерсионное масло, которым заполняют разрыв между изучаемый предметом и передней линзой иммерсионного объектива. Поскольку показатели преломления стекла и масла близки, это позволяет избежать потери световых лучей вследствие их отклонения, и, тем самым, создать оптимальную освещённость поля зрения. Необходимость в концентрации светового пучка обусловлена также и чрезвычайно малым диаметром передней линзы иммерсионного объектива. При микроскопии необходимо помнить, что объективы "сухой системы" не предназначены для погружения в масло, которое может привести их в негодность. Микроскопия с иммерсионной сиетемой позволяет изучать убитые микробы в окрашенном к (стоянии (их форму, размеры, взаимное расположение, строение бактериальной клетки) и дифференцировать одни микробы от других. Способность микробов окрашиваться различными методами называют тинкториальными свойствами. В некоторых случаях (изучение морфологии грибов, простейших, других относительно крупных объектов в живом неокрашенном состоянии) используется световой микроскоп с затемнённым нолем зрения (объективы х40 или х8) Для микроскопии готовят препараты "раздавленная капля" или "висячая капля". Измерение микробов.Изучение морфологических признаков микробов (длина, ширина, форма) нередко проводят для определения их вида. Размеры клеточных микроорганизмов варьируют от долей микрометра (мкм, 10-6м) до нескольких десятков микрометров. Мелкие клетки бактерий имеют размеры 1-2, крупные от 8 до 12 мкм и более. Для измерений используют окуляр-микрометр (встроенную в окуляр прозрачную линейку) и объект микрометр.
2Темнопольный микроскоп (ультрамикроскоп)
Особенностью этого микроскопа является наличие конденсора темного поля (параболоид-конденсора), который концентрирует световой пучок и направляет его на исследуемый объект сбоку. Ввиду того, что прямые лучи отсекаются центральной диафрагмой конденсора, а косые лучи, выходящие по периферии диафрагмы, не попадают в объектив, ультрамикроскоп еет темное поле зрения. При освещении косыми лучами живых и неживых частиц, в т.ч. микробов, часть отраженных лучей попадает в объектив; при этом наблюдается яркое свечение частиц на темном фоне. Темнопольную микроскопию используют для изучения подвижности микробов, наблюдения очень тонких объектов (спирохет) в препарате "раздавленная капля".
Фазово-контрастный микроскоп
Эта разновидность светового микроскопа позволяет изучать структуру живых неокрашенных микробов (прозрачных объектов). При прохождении света через неокрашенные микробные клетки, в отличии от окрашенных, амплитуда снеговых волн не меняется, а происходит лишь их изменение по фазе, что не улавливается глазом человека. Сдвиг по фазе происходит при прохождении участков с большей оптической плотностью (рибосомы, нуклеоид). Специальные
приспособления: фазовый конденсор и объективы с фазовыми кольцами позволяют преобразовать невидимые фазовые изменения в видимые амплитудные.
Люминесцентный микроскоп
Принцип работы этого микроскопа основан на явлении люминесценции. Для получения изображения объектов их обрабатывают флюорохромами, которые при возбуждающем облучении коротковолновой частью спектра светятся цветами с большей длиной волны (зеленым, оранжевым и др.). В люминесцентном микроскопе изучают как живые, так и убитые микробы (с "сухой" или иммерсионной системами). Люминесцентная микроскопия позволяет получить контрастное цветное изображение, обнаружить малое количество микробов, изучить их структуру и химический состав, использовать метод иммунофлюоресценции.
5Электронный микроскоп
Этот прибор отличается от световых микроскопов значительно большей разрешающей способностью (около 0,001 мкм) за счетиспользования вместо света пучка электронов, а вместостеклянных оптических - электромагнитных линз. Вэлектронном микроскопе изучают вирусы, ультраструктуруубитыхх микроорганизмов.Приготовление препарата для микроскопического
исследования.
Окраска по Граму.
I - приготовление мазка.
Предметное стекло обжигают в пламени газовой горелки. Восковым карандашом отмечают пределы будущего мазка в виде окружности диаметром 1-2 см. и кладут стекло на стол. Прокаленной петлёй наносят в середину кружка небольшую каплю стерильного изотонического раствора хлорида натрия. Затем в эту каплю вносят небольшое количество культуры бактерий, тщательно эмульгируют и распределяют тонким слоем в пределах кружка. Мазки из бульонных культур готовят без предварительного нанесения ИХН.
2 - высушивание.
Стекло оставляют на воздухе до исчезновения влаги.
Фиксация.
Фиксацию проводят для того, чтобы убить микробы, прикрепить их к стеклу, повысить их восприимчивость к красителям. Для фиксации предметное стекло (мазком вверх) трижды накладывают на пламя горелки на 2-3 секунды с интервалом 4-6 секунд. Мазки из гноя, крови, мокроты, отечной жидкости фиксируют погружением в фиксирующие жидкости (ацетон,
смесь Никифорова). Такая фиксация позволяет избежать грубых деформаций объекта исследования.
Окраска.
Различают простые и сложные (дифференцирующие) способы окраски. Простые способы позволяют судить о величине, форме, локализации и взаимном расположении клеток. Сложные способы позволяют установить структуру микробов и часто их неодинаковое отношение к красителям. Примером простых способов может служить окраска фуксином (1-2 минуты), метиленовым синим или кристалл-виолетом (3-5 минут), а сложных • окраска по Граму, Романовскому-Гимзе, Циль-Нильсену.