Механизм токсического действия ипритов
Механизмы цитотоксичности ОВ сложны, многообразны и до конца не выяснены.
В основе повреждающего действия ипритов на ДНК лежит образование ковалентных связей с пуриновыми основаниями нуклеотидов (аденином, гуанином).
Поскольку иприт обладает двумя функциональными группами, за счет которых осуществляется атака на нуклеофильные группы оснований, возможно “сшивание” комплементарных нитей двойной спирали ДНК (Папирмейстер и соавт. 1993). Уже эта реакция повреждает генетический код клеток, нарушает процессы редупликации и транскрипции, лежащие в основе синтеза белка и клеточного деления. Показано, что иприт блокирует клеточный цикл митоза обратимо в фазе G2M (синтез компонентов клеточных структур, участвующих в процессе деления клеток, например тубулина) и необратимо в фазе G1S (этап утилизации пуриновых и пиримидиновых оснований и синтеза ДНК). Тем не менее алкилирование ДНК является лишь пусковым механизмом процессов, приводящих к еще более глубокому повреждению клеток и их гибели. Как установлено, поврежденные участки ДНК подвергаются депуринизации (отщеплению алкилированных пуриновых оснований от молекулы), а затем депуринизированные участки под влиянием эндонуклеаз “вырезаются” из структуры нитей нуклеиновых кислот. Появление в ядре фрагментов ДНК активирует ферменты репарации этих макромолекул и, в частности, поли(аденозиндифосфорибозо)полимеразу (ПАФРП). Этот энзим участвует в синтезе новых фрагментов ДНК и встраивании их на место поврежденных участков. Поскольку при действии ипритов на клетки повреждаются смежные участки комплементарных нитей ДНК, в процессе репарации возможны грубые ошибки. Иными словами генетический код клетки полностью не восстанавливается. Как известно субстратом ПАФРП является никатинамидадениндинуклеотид (НАД), активно потребляемый в ходе репаративных процессов. Истощение этого субстрата (invitro наблюдается уже через 2 часа после воздействия иприта на культуру клеток) сопровождается нарушением энергообеспечения клетки, снижается уровень АТФ. Это в свою очередь приводит к нарушению внутриклеточного обмена кальция. Представленные сведения объясняют, почему наибольшей чувствительностью к ипритам обладают органы и ткани, клетки которых активно размножаются (клетки эпидермиса, эпителия желудочно-кишечного тракта, костного мозга и т.д.). Именно здесь нуклеиновый обмен идет с наивысшей интенсивностью, а повреждение генетического аппарата быстро приводит к пагубным последствиям: приостанавливается процесс пополнения пула зрелых, функционально полноценных клеток, выполняющих барьерные, трофические, транспортные и иные функции.
Механизм цитотоксического действия ипритов тесно связан с метаболизмом ксенобиотика в клетках. Полагают, что в реакцию алкилирования биологических субстратов (в том числе и ДНК) вступает не сам иприт, а активные промежуточные продукты его метаболизма. Образование активных метаболитов, как указывалось, проходит при участии микросомальных монооксигеназ. Во второй фазе биопревращения иприта реактивные метаболиты вступают в реакцию конъюгации с глутатионом и детоксицируются. Такой характер превращения токсиканта создает условия для инициации свободнорадикальных процессов в клетке, во-первых, за счет активации перекисных процессов и, во-вторых, за счет подавления механизмов антирадикальной защиты. Значительное снижение уровня глутатиона в клетках после воздействия иприта и активация в них перекисного окисления липидов показаны в эксперименте (Уитфилд, 1987). Результатом цитотоксического действия ипритов является инициация ряда патохимических процессов, играющих существенную роль в патогенезе интоксикации веществами. Так установлено, что под влиянием этих ядов нарушается обмен “медиаторов” воспалительной реакции - цитокинов (эндогенных регуляторов клеточного роста и активности), о чем свидетельствует изменение их уровня в крови и пораженных тканях.
Действуя в высоких дозах, иприты (сернистый и азотистый), при резорбции, нарушают механизмы проведения нервных импульсов в синапсах (главным образом холинэргических) центральной нервной системы и на периферии. Этим, отчасти, объясняются эффекты со стороны сердечно-сосудистой системы (коллапс, брадикардия) или мозга (угнетение высшей нервной деятельности, судороги и т.д.). В последнее время появилась информация о способности ипритов вызывать индукцию и повышать активность NO-синтетазы. Поскольку установлено, что оксид азота является активным регулятором тонуса стенки сосудов и функционального состояния нервных клеток, влиянием на обмен NO также можно отчасти объяснить развивающиеся сосудистые реакции и нарушения со стороны нервной системы.
Таким образом, имеющиеся в настоящее время данные свидетельствуют о чрезвычайно сложном механизме действия ипритов на организм, выяснение которого чрезвычайно важно для понимания явления цитотоксичности в целом.