Исследование поля зрения (периметрия)

Поле зрения - совокупность точек пространства, одновременно воспринимаемых неподвижным глазом, фиксирующим одну из точек этого пространства. Для оценки его состояния используют различные методы исследования - от самых простых до высокоточных, реализуемых с помощью современных технических средств.

Контрольный способ определения периферических границ поля зрения (по Дондерсу)

Врач и пациент располагаются в метре друг от друга таким образом, чтобы их глаза находились на одном уровне. Далее врач ладонью правой руки прикрывает свой правый глаз, а пациент соответствующей ладонью - свой левый глаз. После этого исследующий устанавливает кисть своей левой руки ~ в 0,5 м от исследуемого (за границей видимости с височной стороны) и начинает, слегка двигая пальцами, смещать ее кнутри. Фиксируют момент, когда испытуемый улавливает контуры перемещающегося объекта. Подобным же образом получают представление о положении наружной границы поля зрения пациента и в других интересующих врача меридианах. Следует иметь в виду, что при исследовании в горизонтальном меридиане ладонь врача должна быть расположена вертикально, а в противоположном ему меридиане - горизонтально.

Описанным же выше образом, но как бы в зеркальном отражении, определяют и поле зрения левого глаза пациента. Контролем как в первом, так и во втором случае служит поле зрения врача, если оно, конечно, нормальное. Результаты исследования фиксируют текстуально, т.е. записывают в соответствующий документ заключение, например: наружные границы поля зрения в норме или сужены (концентрично, секторообразно).

  • Кинетическая периметрия

Этот вид исследования выполняют с помощью настольных или проекционных периметров. В первом случае необходимо дневное освещение, во втором - искусственное и сниженное до уровня 3-5 люкс.

Суть исследования сводится к тому, что объект избранного диаметра (от 1 до 5 мм), цвета и яркости медленно передвигают по дуге периметра в направлении от периферии к центру. Если объект белого цвета, то пациент, фиксирующий исследуемым глазом центральную метку периметра, должен определить момент появления его в поле зрения. Что касается хроматических объектов, то опознание их должно производиться по цвету.

В норме у взрослых людей границы монокулярного поля зрения для объекта белого цвета составляют: кнаружи - 90°, кнутри - 55°, вверху - 55°, внизу - 60°. Допустимы индивидуальные колебания в пределах 5-10°. У детей дошкольного возраста периферические границы поля зрения ~ на 10° уже, чем у взрослых людей. На цветные объекты поля зрения всегда уже, чем на тест белого цвета, и не совпадают между собой. При этом по ширине они располагаются в такой последовательности: синий, красный и зеленый цвета.



  • Статическая периметрия

При данном виде исследования (Sloan L., 1939) имеется возможность определять уже пороги световой чувствительности сетчатки, выражены в децибелах (db), в тех ее точках, которые в первую очередь страдают при глаукоме (зона Бьеррума). Это исследование осуществляется с помощью специальных компьютерных периметров, снабженных спектром различных программ.

  • Ориентировочное определение гемианопсий

Пациента просят указательным пальцем какой-либо руки разделить на две части предъявляемый объект - карандаш, линейку и т.д. При наличии ограничений в полях зрения гемианопического типа видимая больному длина его как бы урезается с какой-либо стороны. В результате при правосторонней гемианопсий больной сместит палец влево от реалього центра объекта, а при левосторонней - вправо.

  • Определение центральных скотом и метаморфопсий

Дли проведения этого исследования необходимо иметь тест Амслера (Amsler M., 1930) или воспроизвести его самому - нарисовать на листе бумаги сетку (45x45 мм), состоящую из квадратиков, образованных перекрещивающимися вертикальными и горизонтальными линиями. Суть самого исследования заключается в том, что пациента просят одним глазом (второй надо закрыть) фиксировать с 30 см центральную метку (маленький крестик) сетки и сказать, как он ее воспринимает: четко и без деформаций или с искажениями, что характерно для метаморфопсии. Следует также иметь в виду, что сходимость линий свидетельствует о микропсии, расхождение - о макропсии. Если в поле зрения имеется скотома, то она проявит себя пятном, в пределах которого сетка может отсутствовать (линии как бы обрываются) или выглядеть завуалированной.



  • Оценка функционального состояния периферических отделов сетчатки у пациентов с помутнением оптических сред

Методика стимулирования механофосфена

Исследование производят в затемненной комнате. В заинтересованный глаз закапывают 3-4 раза 0,5% раствор дикаина. Далее врач кончиком стеклянной палочки кратковременно и поочередно надавливает на 4 точки его склеры, находящиеся в 12 мм от лимба по меридианам 1 - 4 - 7 и 10 часов. При этом взгляд исследуемого должен быть направлен в сторону, противоположную точке касания, а сила давления на нее составлять ≈10-13 г. Рекомендуются частые повторные воздействия на точки касания.

Результат исследования оценивается как положительный («+»), если пациент улавливает фосфен и правильно его локализует, т.е. видит в квадранте, противоположном зоне стимуляции сетчатки.

Механофосфен можно вызвать не только воздействием на склеру через конъюнктиву, как это описано выше, но и транспальпебрально. В последнем случае анестезия не требуется. Результаты проведенного исследования необходимо занести в протокольный бланк.


Определение цветоощущения производится с помощью специальных таблиц Рабкина. Пациенту предлагают выявить на картинках цифру или фигуру, причем оттенки фона и определяемого объекта постепенно сближаются.

Дальтонизм,
частичная цветовая слепота, один из видов нарушения цветового зрения. Дальтонизм впервые описан в 1794 Дж. Дальтоном, который сам страдал этим недостатком.

Дальтонизм встречается у 8% мужчин и у 0,5% женщин. Предполагается, что в сетчатой оболочке глаза существуют три элемента, каждый из которых воспринимает только один из трёх основных цветов (красный, зелёный, фиолетовый), смешением которых получаются все воспринимаемые нормальным глазом оттенки. Это - нормальное, т. н. трихроматическое цветоощущение.

При выпадении одного из этих элементов наступает частичная цветовая слепота - дихромазия. Лица, страдающие дихромазией, различают цвета главным образом по их яркости; качественно они способны отличать в спектре лишь "тёплые" тона (красный, оранжевый, жёлтый) от "холодных" тонов (зелёный, синий, фиолетовый). Среди дихроматов различают слепых на красный цвет (протанопия), у которых воспринимаемый спектр укорочен с красного конца, и слепых на зелёный цвет (дейтеранопия).

При протанопии (собственно дальтонизм) красный цвет воспринимается более тёмным, смешивается с тёмно-зелёным, тёмно-коричневым, а зелёный - со светло-серым, светло-жёлтым, светло-коричневым.

При дейтеранопии зелёный цвет смешивается со светло-оранжевым, светло-розовым, а красный - со светло-зеленым, светло-коричневым. Слепота на фиолетовый цвет - тританопия, встречается крайне редко и практического значения не имеет.

При тританопии все цвета спектра представляются оттенками красного или зелёного. В некоторых случаях наблюдается лишь ослабление цветоощущения - протаномалия (ослабление восприятия красного цвета) и дейтераномалия (ослабление восприятия зелёного цвета).

Все формы врождённой цветовой слепоты являются наследственными. Женщины являются проводником этой патологической наследственности; сами сохраняют нормальное зрение и оказываются цветослепыми лишь тогда, когда имеют цветослепого отца наряду с хотя бы гетерозиготной по этому гену матерью.

Приобретённые расстройства цветового зрения могут возникать при различных заболеваниях органа зрения и центральной нервной системы; поражается один или оба глаза и нередко - на все основные цвета. Расстройства цветового зрения выявляют при помощи специальных таблиц или спектральных приборов. Исследование цветового зрения имеет важное значение при профессиональном отборе лиц для работы на транспорте, в авиационных, морской службах, в химической, полиграфической, текстильной и др. отраслях промышленности. Лечению Д. не подлежит.

Существует много способов проверки бинокулярного зрения.


Опыт Соколова с "дырой в ладони" заключается в том, что к глазу исследуемого приставлена трубка (например, свернутый листок бумаги), через которую он смотрит вдаль. Со стороны открытого глаза к концу трубки исследуемый приставляет свою ладонь. В случае нормального бинокулярного зрения за счет наложения изображений создается впечатление наличия в центре ладони отверстия, через которое просматривается картина, видимая, на самом деле, через трубку.


Способ Кальфа, или проба с промахиванием - исследуют бинокулярную функцию с помощью двух спиц (карандашей и пр.) Исследуемый держит спицу горизонтально в вытянутой руке и пытается попасть им в кончик второй спицы, которая находится в вертикальном положении. При наличии бинокулярного зрения задача легко выполнима. При его отсутствии происходит промахивание, в чем можно легко убедиться, проведя опыт с одним закрытым глазом.


Проба с чтением с карандашом: на расстоянии нескольких сантиметров от носа читающего помещают карандаш, который закрывает часть букв. Но при наличии бинокулярного зрения за счет наложения изображений от двух глаз можно читать, несмотря на препятствие, не меняя положение головы - буквы, закрытые карандашом для одного глаза, видны другим и наоборот.


Более точное определение бинокулярного зрения производится с помощью четырехточечного цветотеста. В основе лежит принцип разделения полей зрения правого и левого глаза, которое достигается с помощью цветных фильтров. Имеется два зеленых, один красный и один белый объекты. На глаза обследуемого надевают очки с красным и зеленым стеклами. При наличии бинокулярного зрения видны красные и зеленые объекты, а бесцветный окажется окрашенным в красно-зеленый цвет, т.к. воспринимается и правым, и левым глазом. Если имеется выраженный ведущий глаз, то бесцветный кружок окрасится в цвет стекла, поставленного перед ведущим глазом. При одновременном зрении (при котором в высших зрительных центрах воспринимаются импульсы то от одного, то от другого глаза) обследуемый увидит 5 кружков. При монокулярном зрении, в зависимости от того, какой глаз участвует в зрении, пациент увидит только те объекты, цвет которых соответствует фильтру этого глаза, и окрашенный в тот же цвет объект, который был бесцветным.

Метод предназначен для выявления тонких изменений в переднем отделе глазного яблока.

Исследование проводят в темной комнате с использованием настольной лампы, установленной слева и спереди от пациента на расстоянии 40—50 см на уровне его лица (рис. 6.6). Для осмотра используют офтальмологические лупы силой 13,0 или 20,0 дптр. Врач располагается напротив пациента, его ноги находятся слева от ног последнего. Затем врач берет лупу правой рукой, слегка поворачивает голову пациента в сторону источника света и направляет пучок света на глазное яблоко. Лупу необходимо поместить между источником света и глазом пациента с учетом ее фокусного расстояния (7—8 или 5—6 см) так, чтобы лучи света, проходя через стекло, фокусировались на определенном, подлежащем осмотру участке переднего отдела глазного яблока. Яркое освещение этого участка в контрасте с соседними дает возможность детально рассмотреть отдельные структуры. Метод называется боковым, потому что лупа располагается сбоку от глаза.

При исследовании склеры обращают внимание на ее цвет и состояние сосудистого рисунка. В норме склера белого цвета, видны лишь сосуды конъюнктивы, краевая петлистая сеть сосудов вокруг роговицы не просматривается.

Метод используют для осмотра оптически прозрачных сред глазного яблока (роговицы, влаги передне камеры, хрусталика, стекловидного тела). Учитывая, что роговица и передняя камера могут быть детально осмотрены при боковом (фокаль ном) освещении, этот метод применяют в основном для исследования хрусталика и стекловидного тела.

Источник света устанавливают (в затемненной комнате) сзади и слева от пациента. Врач с помощью зеркального офтальмоскопа, приставленного к его правому глазу, направляет отраженный пучок света в зрачок глаза пациента (рис. 6.7). Для более детального исследования необходимо предварительно расширить зрачок с помощью лекарственных средств. При попадании пучка света зрачок начинает светиться красным цветом, что обусловлено отражением лучей от сосудистой оболочки (рефлекс с глазного дна). Согласно закону сопряженных фокусов, часть отраженных лучей попадает в глаз врача через отверстие в офтальмоскопе. В том случае, если на пути отраженных от глазного дна лучей встречаются фиксированные или плавающие помутнения, то на фоне равномерного красного свечения глазного дна появляются неподвижные или перемещающиеся темные образования различной формы. Если при боковом освещении помутнения в роговице и передней камере не определены, то образования, выявленные в проходящем свете, — это помутнения в хрусталике или в стекловидном теле. Помутнения, находящиеся в стекловидном теле, подвижны, они перемещаются даже при неподвижном глазном яблоке. Мутные участки в хрусталике фиксированы и перемещаются только при движениях глазного яблока. Для того чтобы определить глубину залегания помутнений в хрусталике, пациента просят посмотреть сначала вверх, затем вниз. Если помутнение находится в передних слоях, то в проходящем свете оно будет перемещаться в ту же сторону. Если же помутнение залегает в задних слоях, то оно будет смещаться в противоположную сторону

Биомикроскопия — это прижизненная микроскопия тканей глаза, метод, позволяющий исследовать передний и задний отделы глазного яблока при различных освещении и величине изображения. Исследование проводят с помощью специального прибора — щелевой лампы, представляющей собой комбинацию осветительной системы и бинокулярного микроскопа. Благодаря использованию щелевой лампы можно увидеть детали строения тканей в живом глазу. Осветительная система включает щеле видную диафрагму, ширину которой можно регулировать, и фильтры различного цвета. Проходящий через щель пучок света образует световой срез оптических структур глазного яблока, который рассматривают через микроскоп щелевой лампы. Перемещая световую щель, врач исследует все структуры переднего отдела глаза.

Голову пациента устанавливают на специальную подставку щелевой лампы с упором подбородка и лба. При этом осветитель и микроскоп перемешают на уровень глаз пациента. Световую щель поочередно фокусируют на той ткани глазного яблока, которая подлежит осмотру. Направляемый на полупрозрачные ткани световой пучок суживают и увеличивают силу света, чтобы получить тонкий световой срез. В оптическом срезе роговицы можно увидеть очаги помутнений, новообразованные сосуды, инфильтраты, оценить глубину их залегания, выявить различные мельчайшие отложения на ее задней поверхности. При исследовании краевой петлистой сосудистой сети и сосудов конъюнктивы можно наблюдать кровоток в них, перемещение форменных элементов крови.

При биомикроскопии удается отчетливо рассмотреть различные зоны хрусталика (передний и задний полюсы, корковое вещество, ядро), а при нарушении его прозрачности определить локализацию патологических изменений. За хрусталиком видны передние слои стекловидного тела.

Различают четыре способа биомикроскопии в зависимости от характера освещения:

  • в прямом фокусированном свете, когда световой пучок щелевой лампы фокусируют на исследуемом участке глазного яблока. При этом можно оценить степень прозрачности оптических сред и выявить участки помутнений;
  • в отраженном свете. Так можно рассматривать роговицу в лучах, отраженных от радужки, при поиске инородных тел или выявлении зон отечности;
  • в непрямом фокусированном свете, когда световой пучок фокусируют рядом с исследуемым участком, что позволяет лучше видеть изменения благодаря контрасту сильно и слабо освещенных зон;
  • при непрямом диафаноскопическом просвечивании, когда образуются отсвечивающиеся (зеркальные) зоны на границе раздела оптических сред с различными показателями преломления света, что позволяет исследовать участки ткани рядом с местом выхода отраженного пучка света (исследование угла передней камеры).

При указанных видах освещения можно использовать также два приема:

  • проводить исследование в скользящем луче (когда рукояткой шелевой лампы световую полоску перемещают по поверхности влево-вправо), что позволяет уловить неровности рельефа (дефекты роговицы, новообразованные сосуды, инфильтраты) и определить глубину залегания этих изменений;
  • выполнять исследование в зеркальном поле, что также помогает изучить рельеф поверхности и при этом еще выявить неровности и шероховатости.

Использование при биомикроскопии дополнительно асферических линз (типа линзы Груби) дает возможность проводить офтальмоскопию глазного дна (на фоне медикаментозного мидриаза), выявляя тонкие изменения стекловидного тела, сетчатки и сосудистой оболочки.

Современная конструкция и приспособления щелевых ламп позволяют также дополнительно определить толщину роговицы и ее наружных параметров, оценить ее зеркальность и сферичность, а также измерить глубину передней камеры глазного яблока.

Важное достижение последних лет — ультразвуковая биомикроскопия, позволяющая исследовать цилиарное тело, заднюю поверхность и срез радужки, боковые отделы хрусталика, скрытые при обычной световой биомикроскопии за непрозрачной радужкой.

Исследование поля зрения (периметрия) - student2.ru Офтальмоскопия в обратном виде предназначена для быстрого осмотра всех отделов глазного дна. Ее проводят в затемненном помещении — смотровой комнате. Источник света устанавливают слева и несколько сзади от пациента (рис. 6.9). Врач располагается напротив пациента, держа в правой руке офтальмоскоп, приставленный к его правому глазу, и посылает световой пучок в исследуемый глаз. Исследование поля зрения (периметрия) - student2.ru Офтальмологическую линзу силой +13,0 или +20,0 дптр, которую врач держит большим и указательным пальцами левой руки, он устанавливает перед исследуемым глазом на расстоянии, равном фокусному расстоянию линзы, — соответственно 7—8 или 5 см (рис. 6.10). Второй глаз пациента при этом остается открытым и смотрит в направлении мимо правого глаза врача. Лучи, отраженные от глазного дна пациента, попадают на линзу, преломляются на ее поверхности и образуют со стороны врача перед линзой, на ее фокусном расстоянии (соответственно 7—8 или 5 см), висящее в воздухе действительное, но увеличенное в 4—6 раз и перевернутое изображение исследуемых участков глазного дна. Все, что кажется лежащим вверху, на самом деле соответствует нижней части исследуемого участка, а то, что находится снаружи, соответствует внутренним участкам глазного дна.

Ход лучей при данном способе исследования представлен на рис. 6. 11.

В последние годы при офтальмоскопии используют асферические линзы, что позволяет получить практически равномерное и высокоосвещенное изображение по всему нолю обзора. При этом размеры изображения зависят от оптической силы используемой линзы и рефракции исследуемого глаза: чем больше сила линзы, тем больше увеличение и меньше видимый участок глазного дна, а увеличение в случае использования одной и той же силы линзы при исследовании гиперметропического глаза будет больше, чем при исследовании миопического глаза (вследствие различной длины глазного яблока).

Офтальмоскопия в прямом виде позволяет непосредственно рассмотреть детали глазного дна, выявленные при офтальмоскопии в обратном виде. Этот метод можно сравнить с рассматриванием предметов через увеличительное стекло. Исследование выполняют с помощью моно-или бинокулярных электрических офтальмоскопов различных моделей и конструкций, позволяющих видеть глазное дно в прямом виде увеличенным в 13—16 раз. При этом врач придвигается как можно ближе к глазу пациента и осматривает глазное дно через зрачок (лучше на фоне медикаментозного мидриа-за): правым глазом правый глаз пациента, а левым — левый.

При любом способе офтальмоскопии осмотр глазного дна проводят в определенной последовательности: сначала осматривают диск зрительного нерва, далее — область желтого пятна (макулярную область), а затем — периферические отделы сетчатки.

Исследование поля зрения (периметрия) - student2.ru При осмотре диска зрительного нерва в обратном виде пациент должен смотреть мимо правого уха врача, если исследуют правый глаз, и на левое ухо исследователя, если осматривают левый глаз. В норме диск зрительного нерва круглой или немного овальной формы, желтовато-розового цвета с четкими границами на уровне сетчатки (рис. 6.13). Из-за интенсивного кровоснабжения внутренняя половина диска зрительного нерва имеет более насыщенную окраску. В центре диска имеется углубление (физиологическая экскавация), это место перегиба волокон зрительного нерва от сетчатки к решетчатой пластинке.

Кнаружи от зрительного нерва, на расстоянии двух диаметров диска от него, располагается желтое пятно, или макулярная область (анатомическая область центрального зрения). Врач видит его при исследовании, когда пациент смотрит прямо в офтальмоскоп. Исследование поля зрения (периметрия) - student2.ru Желтое пятно имеет вид горизонтально расположенного овала, немного более темного, чем сетчатка. У молодых людей этот участок сетчатки окаймлен световой полоской — макулярным рефлексом. Центральной ямке желтого пятна, имеющей еще более темную окраску, соответствует фовеальный рефлекс. Картина глазного дна у разных людей различается цветом и рисунком, что определяется насыщенностью эпителия сетчатки пигментом и содержанием меланина в сосудистой оболочке. При прямой офтальмоскопии отсутствуют световые блики отражений от сетчатки, что облегчает исследование. В головке офтальмоскопа имеется набор оптических линз, позволяющих четко фокусировать изображение.

Офтальмохромоскопия. Методика разработана профессором А. М. Водовозовым в 60—80-е годы. Исследование осуществляют с помощью специального электрического офтальмоскопа, в который помещены светофильтры, позволяющие осматривать глазное дно в пурпурном, синем, желтом, зеленом и оранжевом свете.

Офтальмохромоскопия похожа на офтальмоскопию в прямом виде, она значительно расширяет возможности врача при установлении диагноза, позволяет увидеть самые начальные изменения в глазу, не различаемые при обычном освещении. Например, в бескрасном свете хорошо видна центральная область сетчатки, а в желто-зеленом четко вырисовываются мелкие кровоизлияния.

Выворот века (эктропиум) - в этом случае ресничный край века не прилежит к глазному яблоку, а повернут кнаружи. Выворот века может быть незначительной степени, когда веко просто неплотно прилежит к глазному яблоку или несколько отвисает, при более значительной степени слизистая оболочка (конъюнктива) выворачивается кнаружи на небольшом участке или на всем протяжении века. Конъюнктива при этом видна над ресничным краем.

Выворот века может быть:

  • спастическим
  • паралитическим
  • атоническим
  • рубцовым.

Спастический эктропиумразвивается обычно при воспалительных заболеваниях век и конъюнктивы.

Паралитический выворот века возникает при заболеваниях лицевого нерва (невропатия лицевого нерва) в связи со слабостью круговой мышцы глаза.

Атонический выворот векавозникает в старческом возрасте вследствие утраты тонуса круговой мышцы глаз и растяжения и атрофических изменений кожи.

Рубцовый выворот века бывает следствием травматических поражений века, ожогов.

Любая степень выворота век всегда сопровождается обильным слезотечением, повреждением кожи из-за того, что она постоянно мокрая. Конъюнктива подсыхает, утолщается. Могут развиваться различные инфекционные процессы. В конечном итоге может повреждаться роговица, возникать язвенное поражение роговицы (кератит).

Лечение выворота векахирургическое. Применяются различные пластические операции в зависимости от степени выворота века.

Наши рекомендации