Регуляция каталитической активности ферментов белок-белковыми взаимодействиями.
Некоторые ферменты изменяют свою каталитическую активность в результате белок-белковых взаимодействий. Различают 2 механизма активации ферментов с помощью белок-белковых взаимодействий:
· активация ферментов в результате присоединения регуляторных белков;
· изменение каталитической активности ферментов вследствие ассоциации или диссоциации протомеров фермента.
Регуляция каталитической активности ферментов путём фосфорилирования/дефосфорилирования.
В биологических системах часто встречается механизм регуляции активности ферментов с помощью ковалентной модификации аминокислотных остатков. Быстрый и широко распространённый способ химической модификации ферментов – фосфорилирование/дефосфорилирование. Модификации подвергаются ОН-группы фермента. Фосфорилирование осуществляется ферментами протеинкиназами, а дефосфорилирование – фосфопротеинфосфатазами. Присоединение остатка фосфорной кислоты приводит к изменению конформации активного центра и его каталитической активности. При этом результат может быть двояким: одни ферменты при фосфорилировании активируются, другие, напротив, становятся менее активными.
Регуляция каталитической активности ферментов частичным (ограниченным) протеолизом.
Некоторые ферменты, функционирующие вне клеток (в ЖКТ или в плазме крови), синтезируются в виде неактивных предшественников и активируются только в результате гидролиза одной или нескольких определённых пептидных связей, что приводит к отщеплению части белковой молекулы предшественника. В результате в оставшейся части белковой молекулы происходит конформационная перестройка и формируется активный центр фермента (трипсиноген – трипсин).
Ферменты плазмы крови
По происхождению ферменты плазмы крови можно подразделить на 3 группы.
1. Собственные ферменты плазмы крови (секреторные). Они образуются в печени, но проявляют своё действие в крови. К ним относятся ферменты свертывающей системы крови – протромбин, проакцелерин, проконвертин, а также церулоплазмин, холинэстераза.
2. Экскреторные ферменты – попадают в кровь из различных секретов – дуоденального сока, слюны и т.д. К ним относятся амилаза, липаза.
3. Клеточные ферменты – попадают в кровь при повреждениях или разрушениях клеток или тканей.
Таблица 4.1.
Органоспецифические ферменты (изоферменты)
Фермент(изофермент) | Орган, при повреждении которого, активность фермента в крови увеличивается |
ЛДГ1, ЛДГ2 ЛДГ3 ЛДГ4, ЛДГ5 Амилаза АЛТ АСТ кислая фосфатаза щелочная фосфатаза | миокард легкие печень, мышцы поджелудочная железа печень миокард простата кости |
ЭНЗИМОПАТИИ
В основе многих заболеваний лежат нарушения функционирования ферментов в клетке – энзимопатии. Приобретённые энзимопатии, как и вообще протеинопатии, по-видимому, наблюдают при всех болезнях.
При первичных энзимопатиях дефектные ферменты наследуются, в основном, по аутосомно-рецессивному типу. Гетерозиготы, чаще всего, не имеют фенотипических отклонений. Первичные энзимопатии обычно относят к метаболическим болезням, так как происходит нарушение определённых метаболических путей. При этом развитие заболевания может протекать по одному из ниже перечисленных «сценариев». Рассмотрим условную схему метаболического пути:
Е1 Е2 Е3 Е4
А → В → С → D → Р
Вещество А в результате последовательных ферментативных реакций превращается в продукт Р. При наследственной недостаточности какого-либо фермента, например фермента Е3, возможны разные нарушения метаболических путей:
Нарушение образования конечных продуктов.Недостаток конечного продукта этого метаболического пути (при отсутствии альтернативных путей синтеза) может приводить к развитию клинических симптомов, характерных для данного заболевания.
Клинические проявления. В качестве примера можно рассмотреть альбинизм. При альбинизме нарушен синтез в меланоцитах пигментов – меланинов. Меланин находится в коже, волосах, радужке, пигментном эпителии сетчатки глаза и влияет на их окраску. При альбинизме наблюдают слабую пигментацию кожи, светлые волосы, красноватый цвет радужки глаза из-за просвечивающих капилляров. Проявление альбинизма связано с недостаточностью фермента тирозингидроксилазы (тирозиназы) – одного из ферментов, катализирующего метаболический путь образования меланинов.
Накопление субстратов-предшественников. При недостаточности фермента будут накапливаться определенные вещества, а также во многих случаях и предшествующие им соединения. Увеличение субстратов-предшественников дефектного фермента – ведущее звено развития многих заболеваний.
Клинические проявления. Известно заболевание алкаптонурия, при котором нарушено окисление гомогентизиновой кислоты в тканях (гомогентизиновая кислота – промежуточный метаболит катаболизма тирозина). У таких больных наблюдают недостаточность фермента окисления гомогентизиновой кислоты – диоксигеназы гомогентизиновой кислоты, приводящей к развитию заболевания. В результате увеличиваются концентрация гомогентизиновой кислоты и выведение её с мочой. В присутствии кислорода гомогентизиновая кислота превращается в соединение чёрного цвета – алкаптон. Поэтому моча таких больных на воздухе окрашивается в чёрный цвет. Алкаптон также образуется и в биологических жидкостях, оседая в тканях, коже, сухожилиях, суставах. При значительных отложениях алкаптона в суставах нарушается их подвижность.
Нарушение образования конечных продуктов и накопление субстратов-предшественников.Отмечают заболевания, когда одновременно недостаток продукта и накопление исходного субстрата вызывают клинические проявления.
Клинические проявления. Например, у людей с болезнью Гирке (гликогеноз I типа) наблюдают снижение концентрации глюкозы в крови (гипогликемия) в перерывах между приёмами пищи. Это связано с нарушением распада гликогена в печени вследствие дефекта фермента глюкозо-6-фосфатазы. Одновременно у таких людей увеличиваются размеры печени (гепатомегалия) вследствие накопления в ней не используемого гликогена.