Воздействие инфракрасного излучения на организм человека. Особенности биологического действия лазерного света.
Инфракрасное излучение (тепловое излучение) – это вид распространения тепла и это можно сравнить с теплом от горячей печи, солнца или батареи центрального отопления. Инфракрасное излучение нашло очень широкое распространение в медицине (инфракрасные бани, стоматология, хирургия). ИК-излучение играет важную роль в теплообмене. Эффект теплового воздействия на организм зависит: от плотности потока, длительности облучения, зоны воздействия, длины волны, которая определяет глубину проникновения излучения в тело человека. Чем выше температура тела, тем больше частота ИК-лучей. Когда человек сидит перед тепловым рефлектором, он нагревается и его тело излучает тепло, если бы человек, нагреваясь, не излучал, то он бы перегрелся и получил тепловой удар. Мы постоянно подвергаемся действию ИК-лучей, это любые нагревательные приборы в повседневной жизни и в этом случае наш организм сам контролирует ситуацию.
ИК-излучение: Улучшает состояние мышц и суставов и тканей, ИК-лучи улучшают подвижность суставов и соединительной ткани, Улучшает кровоснабжение, Оказывает противовоспалительное и обезболивающее действие, Оказывает косметическое действие, Психологическое действие.
Оптические квантовые генераторы (ОКГ, лазеры) - приборы, представляющие собой источник светового излучения совершенно нового типа. В отличие от луча любого известного источника света, несущего в себе электромагнитные волны различной длины, лазерный луч монохроматичен (электромагнитные волны строго одной длины), отличается высокой временной и пространственной когерентностью (все волны генерируются одновременно в одной фазе), узкой направленностью, что обусловливает точную фокусировку в малом объеме. Действие лазера многогранно - электрическое, фотохимическое; основное действие - тепловое. Наиболее опасны лазеры с большой энергией в импульсе.
Прямой световой монохроматический импульс вызывает в здоровой ткани локальный ожог - коагуляцию белков, местный некроз, резко отграниченный от смежной области, асептическое воспаление с последующим развитием соединительнотканного рубца. При интенсивном облучении - расстройства васкуляризации, кровоизлияния в паренхиматозных органах. При повторных облучениях патологический эффект возрастает. Наиболее чувствительны глаз (роговица и хрусталик фокусируют излучение на сетчатке) и кожа, в особенности пигментированная.
24. Медицинская поляриметрия. Оптическая активность веществ (примеры оптически активных тканей в организме человека. Строение и принцип работы поляриметра-сахариметра.
Свет имеет двойственную природу, с одной стороны это электромагнитная волна(ЭВМ), с другой – поток частиц – фотонов. В ЭВМ колеблются не частицы, а вектора напряженности электрического поля (Е) и индукции магнитного поля (В) в направлениях, перпендикулярно друг другу и по направлению распространения волны Х. Если вектор Е колеблется во всевозможных направлениях, этот свет естественный, если только в одном – поляризованный. Устройство, позволяющее получить поляризованный свет из естественного называется поляризатором (П). Анализатор (А) – тот же поляризатор, необходимый для анализа поляризации.
I = I0*cos2φ
I0 – интенсивность света при параллельном расположении осей поляризатора и анализатора. I – интенсивность света, прошедшего через систему П – А или П – П. Косинус фи – косинус угла между осями двух устройств. Оптически активные вещества - некоторые растворы, способные поворачивать плоскость колебания поляризованного света (сахара, аминокислоты и пр.) Угол поворота (фи) зависит от рода вещества (α) , концентрации раствора (С), толщины кюветы( L)
φ =α*С*L. Данное свойство используют для измерения концентраций биологически важных веществ в различных жидкостях. При этом необходимо использовать поляризованный свет. Оптически активные в-ва: лимфа, ликвор, печень и т.д.
Поляриметр содержит: светофильтр (С), поляризатор (П), кварцевую пластинку (КП – тсавится на пути не всех, а только центр. Лучей), держатель для кюветы с исследуемой жидкостью (ДсК), анализатор (А), окуляр (Ок – линзу для получения четкой картины). Вращением анализатора добиваются одинаковой освещенности всего поля зрения поляриметра. Это будет тогда, когда ось анализатора делит угол между поляризатором и «кварцем» пополам.
Сначала измеряется угол поворота фи для растворов известной концентрации. До того как поставить кювету с раствором в поляриметре добиваются одинаковой освещенности всего поля зрения, и по нониусу опред. Угол – положение анализатора фи1 (до 10ых долей гр). Затем ставят кювету и делают то же самое – опред. Фи2 для одинаковой освщенности всего поля зрения. Угол поворота находят как разность: φ = φ2 – φ1 (с учетом знака углов). Проделав такие измерения дл различных известных концентр., далее строят градуированный график φ = φ(С). Затем опред. Угол поворота для раствора с неизвестной концентрацией, по построенному графику находят неизвестную концентрацию. В результате измерений эксперемент. точки обычно не ложатся на прямую линию. Для построения графика следует по кажд. концетр. Опред. Угол вращения – затем вычислить его среднее значение и уже по этому среднему значению построить график φ = φ(С)