Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине.

Закон Вебера-Фехнера .

Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине. - student2.ru Громкость может быть оценена колич путем, те сравнение слух ощущ от 2 источников. В основе шкалы уровней громкости лежит важный психофиз закон Вебера-Фехнера: «Если увел раздраж в геометр прогрессии, то ощущ этого раздр увел в арифм прогрессии». Применительно к звуку это означает, что если интенс звука прин ряд послед значений аI0,а²I0, а³I0 и тд, то соовт им ощущ громкости звука, будет Е0, 2Е0, 3Е0 и тд. Матем запись закона В-Ф: Eб=klgI/ I0. В общем случае: Еф=10klgI/ I0. Условились считать, что на частоте 1 кГц шкалы интенс и громк совпадают и k=1. Для отл от шкалы интенс в шлаке громкости дБ назыв фонами. Громкость на др частотах можно изм сравнивая исслед звук с частотой 1кГц. Для этого с пом звук генератора (эл прибор генерирующий частоты колеб в Зв диапозоне), созд ν=1кГц. Затем изм интенс до тех пор, пока не возн слух ощущение ананлог ощущу громкости исслед звука. У звука частотой 1кГц в дБ дБ, измеряемая по прибору, равна громкости этого звука в фонах.

Кривые равной громкости. Зависимость громкости от частоты колебаний в системк звуковых измерений определяется на основании экспериментальных данных при помощи графиков, которые назыв К-р-г. Эти кривые характеризуют зависимость уровня интенсивности L от частоты υ звука при постоянном уровне громкости. Кривые называют изофонами. Нижняя изофона соответствует порогу слышимости (Е=0 фон), верхняя показывает предел чувствительности уха, когда слуховое ощущение переходит в ощущение боли (Е=120 фон)

Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине.

Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине. - student2.ru Метод измерения остроты слуха называют аудиометрией. При аудиометрии на аудиометре определяют порог слухового ощущения на разных частотах. Полученная кривая называется аудиограммой.

Аудиограмма - это график, отображающий состояние слуха человека.

По горизонтальной оси откладываются частоты (от 125 до 8000 Гц), а по вертикальной – пороги слышимости на соответствующих частотах, т.е. минимальные уровни звукового давления сигнала, при которых пациент слышит звук. При построении аудиограммы значения этих порогов измеряются специальным прибором – аудиометром.

По характеру данного графика можно судить о нарушениях органа слуха и методах и их коррекции.

Особенности ультразвука.

В каждой среде скорость распространения звука и ультразвука – одинакова. Наиболее важной особенностью ультразвука является узость ультразвукового пучка, что позволяет воздействовать на какие-либо объекты локально. В неоднородных средах с мелкими включениями частиц, когда размеры включений примерно равны, но больше длины волны (L=λ) имеет место явление дифракции. Если размеры включений много больше длины волны имеет место прямолинейность распространения ультразвука. В этом случае можно получать ультразвуковые тени от таких включений, что используется при разл видах диагностики технической и медицинской. Важным теоретическим моментом при использовании ультразвука является прохождение ультразвука из одной среды в другую.

Частота при этом не изменяется. Скорость и длина волны при этом могут изменяться.

Проникновение УВ в другую среду характеризуется коэффициентом проникновения. Он определяется как отношение интенсивности волны попавшей во вторую среду к интенсивности, попавшей волны:

Этот коэффициент зависит от соотношения акустического импеданса двух сред.

Акустическим импедансом называют произведение плотности среды на скорость распространения волн в данной среде:

Коэф. Проникновения наибольший- близкий к 1, если акустический импеданс двух сред примерно равны.

Если импеданс второй среды больше, чем первой, то коэф. проникновения ничтожно мал. В однородных средах ультразвук поглощается по закону показательной функции.

Воздействие УВ на организм.

Три вида действия УВ:

- механическое

- тепловое

- химическое

Все три вида воздействия УВ на организм связано с явлением кавитации- это кратковременные возникновения микро полостей в местах разряжения волны.

УВ ускоряет протекание процессов диффузии и растворения, оказывает влияние на скорость химических реакций. УВ большой мощности вызывает гибель вирусов и бактерий. При малой мощности увеличивается проницаемость клеточных мембран и активизируются процессы обмена в тканях. Способность УВ волн оказывать механическое и тепловое действие на ткани лежит в основе УВ физиотерапии.

Локационные методы:

- эхоэнцефалография( определение опухолей и отека головного мозга)

-ультразвуковая кардиография ( измерение размеров сердца в динамике)

-ультразвуковая локация ( в офтальмологии).

Теменной метод основан на регистрации интенсивности УВ , прошедшего через исследуемый объект. В хирургии для резки костной ткани применяют УВ скальпель.

6.6.Особенности тока крови по крупным сосудам, средним и мелким сосудам, капиллярам, ток крови при сужении сосуда, звуковые эффекты.

Движение крови по сосудам обусловлено градиентом давления в артериях и венах. Оно подчинено законам гидродинамики и определяется двумя силами: давлением, влияющим на движение крови, и сопротивлением, которое она испытывает при трении о стенки сосудов. Силой, создающей давление в сосудистой системе, является работа сердца, его сократительная способность. Сопротивление кровотоку зависит прежде всего от диаметра сосудов, их длины и тонуса, а также от от объема циркулирующей крови и ее вязкости. При каждом сокращении сердца кровь выбрасывается в артерии под большим давлением. Вследствие сопротивления кровеносных сосудов ее передвижению в них создается давление, которое называют кровяным давлением. Величина его неодинакова в разных отделах сосудистого русла. Наибольшее давление в аорте и крупных артериях. В мелких артериях, артериолах, капиллярах и венах оно постепенно снижается; в полых венах давление крови меньше атмосферного. На протяжении сердечного цикла давление в артериях неодинаково: оно выше в момент систолы и ниже при диастоле, Наибольшее давление называют систолическим (максимальным), наименьшее — диастолическим (минимальным). Колебания кровяного давления при систоле и диастоле сердца происходят лишь в аорте и артериях; в артериолах и венах давление крови постоянно на всем протяжении сердечного цикла. Среднее артериальное давление представляет собой ту величину давления, которое могло бы обеспечить течение крови в артериях без колебаний давления при систоле и диастоле. Это давление выражает энергию непрерывного течения крови, показатели которого близки к уровню диастолического давления. Когда давление станет равным систолическому, кровь будет способна пробиться через сдавленную артерию – возникнет турбулентное течение.

---Характерные тоны и шумы, сопровождающие этот процесс, прослушивает врач при изменении давления, располагая фонендоскоп на артерии дистальнее манжеты ( на большом расстоянии от сердца). Продолжая уменьшать давление в манжете, можно восстановить ламинарное течение крови, что заметно по резкому ослаблению прослушиваемых тонов

Перенос ионов через мембраны. Уравнение электродиффузии. Уравнение Нернста-Планка.

Перенос ионов через мембраны: электродиффузия, облегченная диффузия и Активный транспорт.

Электродиффузия – перенос не нейтральных молекул, а заряженных частиц(ионов) вследствие как разности концентраций, так и разности потенциалов.На мембране сущ разность потенциалов, следвовательно в мембране имеется эл поле. Оно оказывает влияние на диффузию заряженных частиц.

Активный транспорт –перенос молекул и ионов в сторону большего электрохимического потенциала (мол-лы переносятся в сторону большей их концентрации, ионы – против сил, действующей на них со стороны эл поля)

Уравнение Нернста-Планка: Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине. - student2.ru .

Поток, обусловленный разностью концентраций(ФΔС): - D * Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине. - student2.ru

Поток, обусловленный разностью потенциалов(ФΔ Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине. - student2.ru : Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине. - student2.ru
Z – валентность электронов.C – молярная концентрация.U – подвижность ионов. U=Vупор.движ.чатиц/F.

F – число Фарадея ( F=96500 Кл/Моль)

Частота зависимости порогов ощутимого и неотпускающего токов. Характеристики пассивных электрических свойств тканей тела человека. Первичное действие постоянным током и переменными электрическими токами на организм.

Порогом ощутимого токаназывают наименьшую силу тока, раздражающее действие которого ощущает человек. Он зависит от места и площади контакта тела с подведенным напряжением, частоты тока, индивидуальных особенностей человека. Подчиняется закону норм.распределения.(кр2)

При увеличении силы тока можно вызвать такое сгибание сустава, при котором человек не сможет самостоятельно разжать руку и освободиться от проводника – источника напряжения. Минимальное значение этого тока называют порогом неотпускающего тока. Токи меньшей силы являются отпускающими.Порог неотпуск. Тока мб губителен для человека. Подчиняется закону норм. Распред-ия(кр.1)

пассивные электрические свойства тканей: электропроводность; электрическое сопротивление; импеданс; электрическую емкость; комплексную диэлектрическую проницаемость и ее составляющие; тангенс угла диэлектрических потерь; коэффициент отражения электромагнитной волны; коэффициент поляризации (коэффициент Тарусова); сдвиг фаз между напряжением и током;

При действии на живые ткани переменными электрическими полями и токами возможны два вида реакции – раздражающее действие и тепловое. Раздражающее действие - частоты не более 500 КГц. Тепловое действие проявляется всегда.

Закон Вебера-Фехнера .

Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине. - student2.ru Громкость может быть оценена колич путем, те сравнение слух ощущ от 2 источников. В основе шкалы уровней громкости лежит важный психофиз закон Вебера-Фехнера: «Если увел раздраж в геометр прогрессии, то ощущ этого раздр увел в арифм прогрессии». Применительно к звуку это означает, что если интенс звука прин ряд послед значений аI0,а²I0, а³I0 и тд, то соовт им ощущ громкости звука, будет Е0, 2Е0, 3Е0 и тд. Матем запись закона В-Ф: Eб=klgI/ I0. В общем случае: Еф=10klgI/ I0. Условились считать, что на частоте 1 кГц шкалы интенс и громк совпадают и k=1. Для отл от шкалы интенс в шлаке громкости дБ назыв фонами. Громкость на др частотах можно изм сравнивая исслед звук с частотой 1кГц. Для этого с пом звук генератора (эл прибор генерирующий частоты колеб в Зв диапозоне), созд ν=1кГц. Затем изм интенс до тех пор, пока не возн слух ощущение ананлог ощущу громкости исслед звука. У звука частотой 1кГц в дБ дБ, измеряемая по прибору, равна громкости этого звука в фонах.

Кривые равной громкости. Зависимость громкости от частоты колебаний в системк звуковых измерений определяется на основании экспериментальных данных при помощи графиков, которые назыв К-р-г. Эти кривые характеризуют зависимость уровня интенсивности L от частоты υ звука при постоянном уровне громкости. Кривые называют изофонами. Нижняя изофона соответствует порогу слышимости (Е=0 фон), верхняя показывает предел чувствительности уха, когда слуховое ощущение переходит в ощущение боли (Е=120 фон)

Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине.

Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине. - student2.ru Метод измерения остроты слуха называют аудиометрией. При аудиометрии на аудиометре определяют порог слухового ощущения на разных частотах. Полученная кривая называется аудиограммой.

Аудиограмма - это график, отображающий состояние слуха человека.

По горизонтальной оси откладываются частоты (от 125 до 8000 Гц), а по вертикальной – пороги слышимости на соответствующих частотах, т.е. минимальные уровни звукового давления сигнала, при которых пациент слышит звук. При построении аудиограммы значения этих порогов измеряются специальным прибором – аудиометром.

По характеру данного графика можно судить о нарушениях органа слуха и методах и их коррекции.

Наши рекомендации