Особенности движения крови по венам. Кровяные депо. Роль венозного возврата в регуляции сердечного выброса.

Давление крови в венах

Значительно ниже, чем в артериях, и может быть ниже атмосферного; венозные сосуды имеют более тонкие стенки, и при физиологических изменениях внутрисосудистого давления меняется их емкость, во многих венах имеются клапаны, препятствующие обратному току крови. Давление в посткапиллярных венулах равно 10—20 мм рт.ст., в полых венах вблизи сердца оно колеблется в соответствии с фазами дыхания от +5 до —5 мм рт.ст. — следовательно, движущая сила составляет в венах около 10—20 мм рт.ст., что в 5—10 раз меньше движущей силы в артериальном русле. При кашле и натуживании центральное венозное давление может возрастать до 100 мм рт.ст., что препятствует движению венозной крови с периферии. Давление в других крупных венах также имеет пульсирующий характер, но волны давления распространяются по ним ретроградно — от устья полых вен к периферии. Причиной появления этих волн являются сокращения правого предсердия и правого желудочка. Амплитуда волн по мере удаления от сердца уменьшается. Скорость распространения волны давления составляет 0,5—3,0 м/с. Измерение давления и объема крови в венах, расположенных вблизи сердца, у человека чаще проводят с помощью флебографии яремной вены. На флебограмме выделяют несколько последовательных волн давления и кровотока, возникающих в результате затруднения притока крови к сердцу из полых вен во время систолы правых предсердия и желудочка. Флебография используется в диагностике, например, при недостаточности трехстворчатого клапана, а также при расчетах величины давления крови в малом круге кровообращения.

Причины движения крови по венам

Основная движущая сила — разность давлений в начальном и конечном отделах вен, создаваемой работой сердца. Имеется ряд вспомогательных факторов, влияющих на возврат венозной крови к сердцу.

1. Перемещение тела и его частей в гравитационном поле

В растяжимой венозной системе большое влияние на возврат венозной крови к сердцу оказывает гидростатический фактор. Так, в венах, расположенных ниже сердца, гидростатическое давление столба крови суммируется с давлением крови, создаваемым сердцем. В таких венах давление возрастает, а в расположенных выше сердца — падает пропорционально расстоянию от сердца. У лежащего человека давление в венах на уровне стопы равно примерно 5 мм рт.ст. Если человека перевести в вертикальное положение с помощью поворотного стола, то давление в венах стопы повысится до 90 мм рт.ст. При этом венозные клапаны предотвращают обратный ток крови, но венозная система постепенно наполняется кровью за счет притока из артериального русла, где давление в вертикальномположении возрастает на ту же величину.

2. Мышечный насос и венозные клапаны

При сокращении мышц сдавливаются вены, проходящие в их толще. При этом кровь выдавливается по направлению к сердцу. При каждом мышечном сокращении кровоток ускоряется, объем крови в венах уменьшается, а давление крови в венах снижается. Например, в венах стопы при ходьбе давление равно 15—30 мм рт.ст., а у стоящего человека — 90 мм рт.ст. Мышечный насос уменьшает фильтрационное давление и предупреждает накопление жидкости в интерстициальном пространстве тканей ног.

3. Движению крови по венам к сердцу

способствует также пульсация артерий, ведущая к ритмичному сдавлению вен. Наличие клапанного аппарата в венах предотвращает обратный ток крови в венах при их сдавливании.

4. Дыхательный насос

Во время вдоха давление в грудной клетке уменьшается, внутригрудные вены расширяются, давление в них снижается до —5 мм рт.ст., происходит засасывание крови, что способствует возврату крови к сердцу, особенно по верхней полой вене. Улучшению возврата крови по нижней полой вене способствует одновременное небольшое увеличение внутрибрюшного давления.

5. Присасывающее действие сердца

способствует кровотоку в полых венах в систоле и в фазе быстрого наполнения. Во время периода изгнания атриовентрикулярная перегородка смещается вниз, увеличивая объем предсердий, вследствие чего давление в правом предсердии и прилегающих отделах полых вен снижается. Кровоток увеличивается из-за возросшей разницы давления.

Кровяное депо

В состоянии покоя у человека до 45—50% всего объема крови, имеющейся в организме, находится в кровяных депо: селезенке, печени, подкожном сосудистом сплетении и легких. В селезенке содержится 500 мл крови, которая может быть почти полностью выключена из циркуляции.

Резервуарная функция селезенки. Осуществляется благодаря особой структуре ее сосудов. Кровь из капилляров поступает сначала в венозные синусы и лишь затем переходит в вены. Синусы имеют легко растяжимые стенки и могут вмещать большое количество крови и, опорожняясь, изливать эту кровь в селезеночную вену и, следовательно, в общий кровоток.

В селезеночных артериях и селезеночных синусах у места впадения их в венулы имеются сфинктеры, регулирующие приток и отток крови. При сокращении венозных сфинктеров отток крови затрудняется и кровь задерживается в синусах, вызывая увеличение размеров селезенки. При этом сфинктеры обычно сдавливают просвет сосудов не полностью. Остаются узкие просветы, задерживающие форменные элементы крови, но пропускающие плазму. При открытых артериальных сфинктерах приток крови в селезенку не ограничен, давление в ее сосудах растет и повышается уровень фильтрационного давления, вследствие чего плазма крови проходит через венозные сфинктеры в вены и общий кровоток. Благодаря этому кровь в сосудах селезенки сгущается. Селезенка может вместить до 1/5 эритроцитов всей крови организма.

При физических и эмоциональных напряжениях влияния, идущие к селезенке по симпатическим волокнам, а также адреналин, выбрасываемый в кровь мозговым веществом надпочечников, вызывают сокращение гладкой мускулатуры капсулы, трабекул и сосудов в данном органе. Венозные сфинктеры при этом открываются и депонированная в селезенке кровь выбрасывается в общий кровоток. В кровоток поступает дополнительно и большое количество эритроцитов. Таким образом, селезенка является основным депо эритроцитов. Большое количество их, поступая в циркулирующую кровь при физических и эмоциональных напряжениях, значительно повышает кислородную емкость крови.

Гладкие мышцы селезенки могут сокращаться под влиянием импульсов, поступающих из коры большого мозга, т. е. условно-рефлекторным путем. Вследствие этого любые сигналы о предстоящей физической нагрузке или эмоциональном напряжении могут вызывать сокращение гладких мышц селезенки и выход в кровь большого количества эритроцитов. Организм оказывается заблаговременно подготовленным к предстоящим физическим и эмоциональным нагрузкам. Выход крови из селезенки наблюдается также при кровопотерях, ожогах, травмах, гипоксии, асфиксии, анестезии и при ряде других состояний.

Депонирующая роль печени и кожи. Кровь, находящаяся в сосудах печени и сосудистом сплетении кожи (у человека до 1 л), циркулирует значительно медленнее (в 10—20 раз), чем в других сосудах. Поэтому кровь в данных органах задерживается, т. е. они также являются как бы резервуарами крови.

Большую роль в качестве депо крови играет печень. В стенках крупных ветвей печеночных вен имеются мышечные пучки, образующие сфинктеры, которые, сокращаясь, суживают устье вен, что препятствует оттоку крови от печени. Кровь, находящаяся в печени, не выключается из циркуляции, как это происходит в селезенке, но ее движение замедляется. Регуляция кровенаполнения печени, а следовательно, ее функция как депо крови осуществляется рефлекторным путем. Роль депо крови выполняют вся венозная система и в наибольшей степени вены кожи.

Требования к пищевому рациону

- он должен быть обеспечен растительной клетчаткой;
- сбалансирован но содержанию белка и незаменимых аминокислот;
- содержать полиненасыщенные жирные кислоты. Содержание жирных кислот сводиться до минимума обратно пропорционально возрасту;
- включать природные антиоксиданты - витамины Е, С, А, кроме того, продукты с витаминами группы В;
- пищевой рацион должен содержать необходимый набор макромикроэлементов.
Пищевой рацион рассчитывается на 5-тикратный прием. Дробное питание способствует поддержанию умеренных колебаний глюкозы в крови, появляется возможность и бежать резких приступов голода и переедания.

Нормы пищевых веществ в завис от возраста хар ра труда и сост организма

1 группа - работники преимущественно умственного труда:

2 группа - работники, занятые легким физическим трудом:

3 группа - работники среднего по тяжести труда:

4 группа - работники тяжелого физического труда:

5 группа - работники, занятые особо тяжелым трудом:

Группы труда Возраст- ные группы (годы) Мужчины Женщины
энер-гия, ккал белки, г жиры, г угле-воды, г энер-гия, ккал белки, г жиры, г угле-воды, г
всего в т.ч. живот-ные всего в т.ч. живот-ные
18-29 30-39 40-59 2450 2300 2100 72 68 65 40 37 36 81 77 70 358 335 303 2000 1900 1800 61 59 58 34 33 32 67 63 60 289 274 257
18-29 30-39 40-59 2800 2650 2500 80 77 72 44 42 40 93 88 83 411 387 366 2200 2150 2100 66 65 63 36 36 35 73 72 70 318 311 305
18-29 30-39 40-59 3300 3150 2950 94 89 84 52 49 46 110 105 98 484 462 432 2600 2550 2500 76 74 72 42 41 40 87 85 83 378 372 366
18-29 30-39 40-59 3850 3600 3400 108 102 96 59 56 53 128 120 113 566 528 499 3050 2950 2850 87 84 82 48 46 45 102 98 95 452 432 417
18-29 30-39 40-59 4200 3950 3750 117 111 104 64 61 57 154 144 137 586 550 524 - - - - - - - - - - - - - - -

Билет 14

17. Гипоталамо-аденогипофизарная система. Активирующие и тормозящие секрецию гипофизарных гормонов нейрогормоны гипоталамуса. Гормоны аденогипофиза, их роль в регуляции функций организма

Гипофиз, занимает особое положение в эндокриной системе. В тесном функциональном единстве с гипоталамусом гипофиз обеспечивает управление эндокринными функциями организма. Разделяется на нейрогипофиз (задняя доля) и аденогипофиз (передняя доля), а также промежуточную долю.

Различают гипоталамо-заднегипофизарную систему, в которой вырабатывается вазопрессин и окситоцин, и гипоталамо-аденогипофизарную систему, в которой происходит выработка либеринов и статинов, гормонов, стимулирующих либо угнетающих секрецию гормонов гипофиза.

Гипоталамо-аденогипофизарная система. Основное ее назначение – осуществление связи между гипоталамусом и гипофизом. В мелких нейросекреторных клетках гипоталамуса, локализованных в гипофизотропной зоне, происходит выработка либеринов (релизинг-факторов) и статинов, пептидов, контролирующих функции железистых клеток аденогипофиза. Нейросекреторные клетки очень похожи на нейроны. Они имеют аксоны и дендриты, нейрофибриллы, они способны проводить и генерировать нервные импульсы (обладают потенциалзависимыми катионными каналами). От тел нейросекреторных клеток отходят длинные аксоны, составляющие гипоталамо-аденогипофизарный тракт, оканчивающийся в нейрогемальной области. По аксонам механизмом аксонного транспорта перемещается в область окончаний нейросекрет в виде гранул, содержащих гормоны, соединенные с белковыми носителями. В окончании носитель отщепляется от гормона, последний выходит (секретируется) в кровоток. Сома нейросекреторных клеток покрыта многочисленными синапсами, что свидетельствует о мощном нервном контроле их функций.

Гипофиз располагает воротной системой кровообращения. Воротные вены аденогипофиза служат мишенью для аксонов нейросекреторных клеток, образующих синаптические контакты на их стенках. Из капилляров воротной системы гормоны попадают к клеткам аденогипофиза.

Известны следующие либерины и статины гипоталамуса.

Либерины (релизинг-факторы):

1.Кортиколиберин (усиливает секрецию АКТГ)

2.Тиреолиберин (усиливает секрецию тротропина)

3.Фоллиберин (усиливает секрецию фоллитропина)

4.Люлиберин (усиливает секрецию люлитропина)

5.Соматолиберин (усиливает секрецию соматотропина)

6.Пролактолиберин (усиливает секрецию пролактина)

7.Меланолиберин (усиливает секрецию меланотропина)

Статины:

1.Соматостатин

2.Пролактостатин

3.Меланостатин.

Кроме перечисленных, в клетках гипоталамуса вырабатывается множество других регуляторных молекул, нейропептидов в том числе, вещество Р, нейротензин, бомбезин, энкефалины и эндорфины. Они могут влиять на поведение, энкефалины и эндорфины уменьшают восприятие боли, способствуют эйфории. Неожиданно несколько лет назад выяснилось, что некоторые либерины обладают собственной (независимой от гипофиза) физиологической активностью. Кортикотропин-релизинг-фактор, нейропептид из 41 аминокислотного остатка, играет ключевую роль в реализации когнитивных функций мозга, улучшает выработку условных рефлексов и контролирует процессы памяти, а также может влиять на кровообращение и двигательную активность подопытных крыс.

Аденогипофизарные клетки под воздействием либеринов и статинов производят собственные гормоны. Поскольку большая часть из них влияет на активность периферических эндокринных желез, их называют тропными, или тропинами.

Адренокортикотропный гормон, полипептид из 39 аминокислотных остатков (АКТГ) необходим для развития и секреции корковыми клетками надпочечников собственных гормонов. АКТГ стимулирует выработку и секрецию глюкокортикоидов. Контролируется кортиколиберином.

Тиреотропный гормон гликопротеин, стимулирует рост и развитие щитовидной железы и регулирует выработку этой железой тироксина и трийодтиронина.

Гонадотропные гормоны:

фолликулостимулирующий (стимулирует развитие фолликулов в яичниках, дифференцировку сперматозоидов)

лютеинизирующий (участвует в процессе овуляции, образовании желтого тела, стимулирует секрецию половых гормонов клетками половых желез.

Эффекторные гормоны аденогипофиза (действуют на неэндокринные клетки организма):

Соматостатин, гормон роста. Полипептид, имеет 191 аминокислотный остаток. При недостатке гормона роста организм испытывает задержку роста, с сохранением всех других функций. Избыток соматостатина приводит к гигантизму или акромегалии. Повышает синтез белков, способствует транспорту аминокислот в клетки, усиливает мобилизацию жирных кислот. Влияет на энергетический обмен.

Пролактин, 198-остаточный полипептид. Стимулирует рост молочных желез и секрецию молока, влияет на реализацию родительских инстинктов.

Гормон промежуточной доли гипофиза меланоцистостимулирующий гормон, полипепдид, близок по структуре к АКТГ. Секреция регулируется меланолиберином и меланостатином. У животных действует на хроматофоры кожных покровов, функции которых - покровительственная окраска и маскировка в среде обитания. У человека меланин выступает как антиоксидант, участвует в темновой адаптации зрения.

Гормоны эпифиза мелатонин и серотонин (он еще и нейромедиатор), принимают участие в тех реакциях организма, которые зависят от смены темного и светлого времени суток. Гормон вилочковой железы тимозин контролирует отдельные проявления иммунитета.

Наши рекомендации