Глава 14. куда делись мои ключи?

Давай проведем эту ночь вместе, проснемся поутру и будем жить вечно.

Из песни группы Jamiroquai

Тем весенним вечером 2013 г. я закончил несколько интервью в Беркли, сел в арендованную машину и влился в плотный транспортный поток, движущийся по автостраде 880 вдоль восточного побережья залива в сторону к Сан-Хосе. Я опаздывал и, когда поток автомобилей почти остановился, остро почувствовал, как вызванный этим стресс (вместе с загрязненным воздухом, который я вдыхал своими легкими) немного ускорил мой собственный процесс старения. В конце концов пробка рассеялась, позволив мне добраться до небольшого офисного комплекса в городке Маунтин-Вью.

Я приехал на ежемесячную встречу так называемого Салона продления здоровья (Health Extension Salon), свободного собрания обитателей района залива, интересующихся проблемами старения. До этого я присутствовал на многих конференциях и встречах по геронтологии, где собирались как серьезные ученые, так и просто самоучки-геронтологи, погружавшиеся в самые дебри современной молекулярной биологии. Большинству из них было под 60 и больше. Но, войдя в эту комнату, я с удивлением увидел совсем другую картину: здесь собралась в основном молодежь.

В переполненном помещении толпились человек 150, не меньше. Средний возраст присутствующих был намного меньше 40 — седые головы можно было пересчитать по пальцам. Вино уже закончилось, что было моим наказанием за опоздание. Поскольку это происходило в самом сердце Кремниевой долины, в атмосфере витал дух высоких технологий: несколько парней были одеты в пиджаки с эмблемами космической компании SpaceX, а быстрый взгляд вокруг давал понять, что сам офис принадлежит компании, каким-то образом связанной с робототехникой. Увенчанный взъерошенной шевелюрой организатор Джо Беттс-Лакруа пообещал, что по окончании собрания предусмотрена игра в «Твистер»[34], с чем я тоже ни разу не сталкивался на конференциях по геронтологии. Но сначала, объявил он, мы послушаем доклады о стволовых клетках и сиамских близнецах.

Основным докладчиком этим февральским вечером был исследователь из Южнокалифорнийского университета в Сан-Франциско по имени Сол Вилледа, который отлично вписывался в общую картину мероприятия. Темноволосый и коренастый, он также был намного моложе типичного ученого-геронтолога. Говорил он не как сыплющий научным жаргоном ученый, а как южнокалифорнийский серфингист, перемежая свою речь молодежным сленгом. Меня поразило, с какой легкостью он объяснял довольно сложные темы неподготовленной аудитории, и, когда мы встретились с ним в его кабинете несколько дней спустя, он признался, что отточил этот навык на своих родителях, которые эмигрировали из Гватемалы с образованием в пять классов начальной школы.

Сол родился в 1981 г. в восточном районе Лос-Анджелеса; его отец работал дворником, а мать помощницей медсестры. В конце концов им удалось скопить достаточно денег, чтобы воплотить в жизнь американскую мечту — купить свой дом. Хотя бы и в Ланкастере, штат Калифорния, небольшом рабочем городке на краю пустыни Мохаве. Сол блестяще учился в школе и проявлял склонность к наукам, поэтому его приняли в Южнокалифорнийский университет в Лос-Анджелесе, и он даже получил стипендию. Затем он поступил в аспирантуру Стэнфордского университета, где его взял в свою лабораторию известный ученый-невролог Тони Висс-Корей.

Вместе со своим коллегой по Стэнфорду Томасом Рандо Висс-Корей возродил изобретенный в XIX веке метод исследований — уже известный нам парабиоз (когда двух животных сшивают вместе, объединяя их кровеносные системы в одну). Рандо интересовался мышцами, а Висс-Корей начал исследовать влияние старой крови на мозг мышей. Вилледа оставался в его лаборатории столько, сколько мог.

Недавно он создал собственную лабораторию в новом Цент­ре регенеративной медицины и исследований стволовых клеток в Южнокалифорнийском университете в Сан-Франциско. На тот момент ему исполнилось всего 32 года, что делает его своего рода «выскочкой» на общем фоне: из-за ограниченного финансирования сегодня большинство ученых считают удачей открыть собственную лабораторию в 40–45 лет. Но, если посмотреть на историю науки, проблема становится очевидной: большинство крупных научных открытий сделано молодыми учеными в возрасте 20–30 лет, когда они находятся на пике творческого потенциала и не боятся смелых идей. Например, Эйнштейну было всего 26 лет, когда он сформулировал свой знаменитый закон E = mc2.

Одна из причин этого кроется в элементарной физиологии: у молодых ученых и мозг моложе. Он более пластичный, творческий и богатый нейронными связями, что позволяет им лучше устанавливать взаимосвязи между наблюдаемыми и даже очевидными фактами и делать «интуитивные прыжки», приводящие к большим научным открытиям. С возрастом даже у самых умных и творческих мыслителей головной мозг теряет прежнюю пластичность и их мышление становится более жестким и консервативным.

В некотором смысле именно этой теме и был посвящен доклад Сола Вилледы.

* * *

Возраст негативно отражается на нашем головном мозге. Причина всех бед кроется в том прискорбном факте, что (как и клетки сердечной мышцы) наши нейроны не восстанавливаются. По крайней мере, не в тех объемах, в которых это необходимо. Поэтому за свою жизнь мы, как правило, теряем около 10% наших нейронов. Хуже того, мы теряем примерно четверть всех наших синапсов — соединений между нейронами, играющих ключевую роль во всех мыслительных процессах. Наконец, из-за сокращения количества дендритных шипиков[35]снижается эффективность существующих соединений между нейронами, что ухудшает нашу способность к запоминанию, творческому мышлению и наши когнитивные способности в целом.

Эта деградация поначалу происходит очень медленно, но, как показало недавнее исследование, результаты которого были опуб­ликованы в авторитетном журнале British Medical Journal, у многих людей значительное снижение когнитивных способностей наблюдается уже в возрасте 40 лет165.

Мы — не единственные животные, у которых мозг деградирует с возрастом. Даже дрозофилы теряют свою память. Ученые установили это в ходе простого эксперимента: давая мушкам сливы, они подвергали их слабому удару электрическим током, а давая вишни — нет. В конце концов дрозофилы научились тому, что вишни — это хорошо, а сливы — плохо. Но через пару недель, к концу своего среднего срока жизни, дрозофилы полностью забыли, что к чему. Со мной происходит нечто подобное — несколько месяцев назад я куда-то дел свой пульт от телевизора и до сих пор не могу его найти.

Как и в человеческом головном мозге, в мозге некоторых дрозофил с возрастом начинают формироваться бляшки. Эти бляшки образуются из отходов жизнедеятельности клеток и располагаются между нейронами, сдавливая их и иногда приводя к их гибели. Именно такое «загрязнение» баварский психиатр и невролог Алоис Альцгеймер, руководивший психиатрической лечебницей во Франкфурте, обнаружил в головном мозге самой известной своей пациентки, когда та умерла в 1906 г. в возрасте 56 лет.

Ее звали Августа Д.166, она была женой служащего железной дороги и в буквальном смысле сошла с ума. Она была дезориентирована, не могла запомнить самые простые вещи и страдала паранойей и галлюцинациями. Она не давала мужу покоя своими приступами ревности, беспочвенно обвиняя его в связи с соседкой, а всех знакомых подозревала в желании причинить ей вред. Она считала, что сейчас идет не 1901 г., а 1800-й. «Она сидит на кровати с отстраненным выражением лица, — описывал ее Альцгеймер в своем журнале. — На обед она ест капусту и свинину. Но на вопрос, что она ест, отвечает: "Шпинат"».

После ее смерти он понял причину ее психических недугов. Вскрытие показало, что в головном мозге Августы Д. царил ужасающий беспорядок. Под микроскопом было видно, что пространство между нейронами заполнено липкими бляшками из какого-то неизвестного вещества. Внутри самих нейронов находились какие-то нитяные клубки, похожие на растрепанные мотки пряжи. Зрелище настолько поразило Альцгеймера, что он зарисовал некоторые из них (см. рис. ниже).

глава 14. куда делись мои ключи? - student2.ru

Альцгеймер считал, что именно эти бляшки и клубки и были причиной умственной деградации его пациентки. Через несколько лет в одном авторитетном учебном пособии этот синдром назвали болезнью Альцгеймера. Но только в начале 1970-х гг. синдром Альцгеймера был признан главной причиной распространенного возрастного заболевания, которое раньше называли просто старческим маразмом. В настоящее время Центр по контролю и профилактике заболеваний признал болезнь Альцгеймера шестой по распространенности причиной смертности в США, однако даже эта цифра не отражает истинной картины: многие страдающие этим заболеванием умирают по другим причинам, например от инфекций или инфарктов. Примерно 40% американцев старше 84 лет страдают болезнью Альцгеймера. Согласно прогнозам Ассоциации Альцгеймера, к 2050 г. число американцев, пораженных этим недугом, может вырасти более чем в три раза, до 16 млн, а затраты на уход за ними превысят $1 трлн.

Странное вещество, из которого были образованы бляшки в мозге Августы Д., называется бета-амилоидом (или A-бета) и представляет собой белок, чье происхождение и функции до сих пор остаются загадкой для ученых. Какова бы ни была его роль в нашем организме, с возрастом его выработка в головном мозге увеличивается. И когда этот липкий белок собирается в бляшки, он оказывает токсическое действие на наши нейроны и активно стимулирует воспалительный процесс. Принято считать, что накопление таких амилоидных бляшек в мозге и является одной из главных причин развития болезни Альцгеймера.

За последнее десятилетие некоторые ведущие фармацевтические компании разработали препараты, которые эффективно выводят бета-амилоид из головного мозга мышей. Тестирование препаратов показало, что это происходит как в образцах тканей в лабораторных чашках, так и у живых особей.

Есть только одна проблема: в клинических испытаниях на людях эти препараты не дали никаких результатов167. Наоборот, один или два препарата привели к ухудшению показателей по тестам на память наподобие тех, которым я подвергался в программе BLSA («кальмары, кинза, ножовка…»).

В фармацевтической компании Eli Lilly на третьем этапе тес­тирования «провалились» два основных препарата — неудача для компании, но, возможно, важный шаг вперед для науки, поскольку это фиаско заставляет по-новому взглянуть на саму природу болезни. Все больше ученых подвергают сомнению амилоидную теорию возникновения болезни Альцгеймера, а журнал BusinessWeek назвал ее «кладбищем для лекарств». Действительно, из более чем двухсот потенциальных препаратов от болезни Альц­геймера, проходивших клинические испытания с 2002 г., всего одному удалось добраться до рынка — это препарат под названием Aricept, одновременно безумно дорогой и малоэффективный (он задерживает развитие заболевания всего на четыре месяца). Некоторые исследователи предполагают, что во всем виноват другой токсичный белок — тау-белок, который также обнаруживается в большом количестве в мозге пациентов с болезнью Альцгеймера. Наконец, третьи считают, что болезнь может начинаться совсем иначе, поэтому требует совершенно другого подхода к лечению — а еще лучше к профилактике.

Что же отличает «Август Д.» — людей, которые уже в 50 лет безо всяких видимых причин становятся жертвами слабо­умия — от «Ирвингов Канов», которые, отпраздновав 100-летний юбилей, продолжают успешно инвестировать на фондовом рынке? Насколько вообще предотвратимо это состояние «старческого маразма»?

Удивительный ответ был получен в ходе многолетнего исследования жизни пожилых монахинь в одном из монастырей штата Кентукки. Исследователи из Университета Кентукки нашли в архивах монастыря автобиографии 180 монахинь, написанные ими в момент пострижения, то есть в молодом возрасте. Они про­анализировали литературный стиль этих женщин и обнаружили, что чем более сложными и содержательными были их предложения и чем богаче был их словарный запас, тем меньше впоследствии они были подвержены развитию болезни Альцгеймера и других форм деменции. Монашки, писавшие более сложные и качественные тексты, также прожили в среднем на семь лет дольше тех, чьи жизненные истории отличались незамысловатой простотой, представляя собой обычные перечни имен, дат и мест. Посмертное вскрытие показало, что головной мозг первых монахинь был намного меньше загрязнен168 амилоидными бляшками, чем у вторых.

Еще одно интересное открытие было сделано в ходе программы BLSA. Посмертное вскрытие некоторых участников программы показало, что головной мозг многих здоровых в когнитивном плане людей содержал большое количество амилоидных бляшек и клубков. Более того, у некоторых из них головной мозг выглядел даже хуже, чем у тех, кому при жизни был поставлен диаг­ноз «деменция». Подобный загадочный феномен обнаружили и британские исследователи: у трети «нормальных» пациентов в мозге были обнаружены завалы белкового мусора. Другими словами, внутри их мозг имел все признаки болезни Альцгеймера169, но никаких внешних проявлений заболевания у них не наблюдалось. Почему?

Одна из теорий гласит, что у людей с более высоким уровнем образования и более развитым головным мозгом формируется так называемый когнитивный резерв170 — точно так же, как у спортсменов благодаря продолжительным занятиям спортом повышается выносливость и стрессоустойчивость их сердечно-сосудистой системы. Образование и обучение новому способствуют возникновению большого количества нейронных путей и синаптических связей, что наделяет этих людей своего рода защитной буферной зоной, тормозящей появление симптомов деменции. Кроме того, осознанно или нет, такие люди изобретательнее маскируют или компенсируют ухудшение своих когнитивных функций. Но старение скрывается в их головном мозге точно так же, как оно скрывается в наших телах. Оно не может скрываться вечно. Поэтому, когда эти умные пациенты все же уступают перед напором болезни, деградация обычно происходит довольно быстро.

«Используйте это, или вы это потеряете» — это правило относится и к нашему головному мозгу. Помните о старом английском фермере, который в 76 лет сохранил свои ноги сильными и «молодыми», потому что использовал их каждый день? Исследование почти 2000 пожилых людей, результаты которого были опубликованы в июне 2014 г. в журнале JAMA Neurology, показало, что те из них, кто интенсивно использовал свой мозг после 40 лет, смогли отсрочить первые признаки ухудшения памяти более чем на десять лет.

Было также доказано, что пациенты, демонстрирующие устойчивость к болезни Альцгеймера, также меньше подвержены депрессиям, которые часто идут рука об руку со старением головного мозга. Люди с «устойчивым» личностным профилем каким-то образом сдерживают умственный спад, даже если их головной мозг засорен амилоидными бляшками и другим мусором. Точно так же жизнерадостные монахини жили почти на семь лет дольше и меньше страдали когнитивными нарушениями, чем их сестры-пессимистки. Депрессия разрушает наши синаптические связи, уменьшая разветвленность и плотность наших нейронных сетей, и таким образом сокращает наш когнитивный резерв.

Аналогичным негативным эффектом обладает и недостаток сна. В настоящее время ученые пришли к выводу, что сон имеет решающее значение для здоровья головного мозга, особенно у пожилых людей. Сон дает клеткам мозга возможность очис­титься от вредных и токсичных продуктов метаболизма, которые накапливаются в клетках и еще больше нарушают их функционирование.

Неудивительно, что после бессонной ночи нам трудно соображать и сосредоточиться. Даже простой сбой биоритмов, например из-за перелета через несколько часовых поясов — феномен, известный как джетлаг, — вызывает серьезные нарушения: в одном из исследований ученые из Виргинского университета взяли группу пожилых крыс и начали передвигать их цикл сна и бодрствования на шесть часов вперед каждую неделю. Через четыре недели половина крыс умерла. (Шокирующий факт: джетлаг ускоряет ваше старение171.)

Я не знаю, хорошая эта новость или нет, но предотвратить или по крайней мере значительно отсрочить болезнь Альцгеймера легче, чем вылечить ее. Крупномасштабное исследование, проведенное в 2011 г. учеными из Южнокалифорнийского университета в Сан-Франциско, показало, что профилактика семи основных факторов риска — таких как сахарный диабет, ожирение среднего возраста (определяется как объем талии у мужчин больше 99 см и у женщин больше 91 см), гипертония среднего возраста, курение, депрессия, низкий уровень образования и низкий уровень физической активности — позволяет предотвратить до половины всех случаев развития болезни Альцгеймера172. Еще одно недавнее долгосрочное исследование показало, что люди, которые имели лучшее физическое здоровье в 25 лет, сохраняли лучшее когнитивное здоровье в возрасте 50 лет.

Марк Маттсон из Национального института здоровья считает, что это имеет под собой здравый эволюционный смысл: физическая активность улучшает нашу память, чтобы мы могли лучше запоминать такие важные вещи, как местонахождение источников пищи, воды и строительных материалов, обнаруженных нами во время охоты. Если мы прошли мимо родника или добротного упавшего дерева, важно, чтобы потом мы могли отыскать это место. Следовательно, может существовать прямая взаимосвязь между любовью моего отца к велосипедным прогулкам — с мая по ноябрь 2013 г. он проехал свыше 4000 км, больше, чем я за весь год — и тем, что он по-прежнему сохраняет ясность и остроту ума.

Даже менее интенсивная физическая активность производит выраженный благотворный эффект: в ходе одного исследования было установлено, что обычные пешие прогулки длительностью всего 20 минут в день173 позволяли замедлить или даже остановить снижение когнитивных способностей у пациентов, у которых уже была диагностирована болезнь Альцгеймера, — эффект, которого трудно достичь при помощи лекарств. В настоящее время исследователи из Национального института здоровья поставили перед собой цель определить, не обладают ли таким же эффектом занятия бальными танцами в пожилом возрасте. Я думаю, что вы можете записаться в танцевальную студию, не дожидаясь результатов этого исследования, — очевидно, что вам будут гарантированы масса пользы и удовольствия и никакого вреда.

Все это говорит о том, что истоки болезни Альцгеймера отчасти кроются в метаболизме. Как отмечает Сол Вилледа, физическая активность меняет «среду» — то есть биохимический состав нашей крови — таким образом, что она становится благо­приятной для функционирования наших нейронов и здоровья в целом. Например, когда я застревал во время работы над этой книгой, я вставал из-за стола и отправлялся на часовую велосипедную прогулку. К концу этой прогулки решение само приходило мне в голову.

К сожалению, физическая активность дает лишь временный эффект. Тем не менее растущее количество данных свидетельствует о том, наш головной мозг является более пластичным, чем принято было считать, — и даже процесс его старения при определенных условиях может быть обращен вспять. Так что у меня есть шанс когда-нибудь вспомнить, куда я дел свой пульт от телевизора.

Сол Вилледа не всегда был убежден в том, что старые клетки мозга поддаются восстановлению. В лаборатории Тони Висса-Корея он видел, что кровь пациентов с болезнью Альцгеймера заметно отличается от крови здоровых пожилых людей, поэтому у него возник логичный вопрос — не могут ли быть наблюдаемые биохимические изменения крови главной причиной или же фактором, способствующим старению головного мозга? «Учитывая существование гематоэнцефалического барьера[36], мы хотели узнать, во-первых, оказывает ли кровь в принципе какое-либо влияние на головной мозг. И, во-вторых, существует ли какая-либо взаимосвязь между старой кровью и старением мозга», — говорит Вилледа.

На эти вопросы можно было ответить только при помощи парабиоза. Исследователи повторили эксперимент Фредерика Людвига, сшив попарно несколько десятков мышей. Старых грызунов соединяли со старыми и молодыми и отдельно молодых с молодыми. Спустя несколько месяцев, после того как кровеносные системы сшитых мышей объединились и их кровь перемешалась, ученые обследовали головной мозг молодых мышей. Полученные результаты они изложили в статье под названием «Стареющая системная среда негативно влияет на нейрогенезис и когнитивные функции», опубликованной в журнале Nature. Они обнаружили, что в результате омывания старой кровью («стареющей системной средой») молодой мозг начинал хуже работать, становился менее защищенным и гораздо хуже восстанавливал нейроны. Удручающее открытие: старая кровь вредит нашему головному мозгу174. Но тогда Вилледа задал другой вопрос: а как влияет молодая кровь на стареющий головной мозг?

Проблема в том, что при парабиозе довольно трудно определить, что происходит в головном мозге отдельно взятой мыши. Как протестировать когнитивные способности мыши, если она пришита к другой? Поэтому Вилледа пошел другим путем: он просто взял плазму крови молодых мышей и ввел ее старым мышам, после чего заставил их пройти ряд когнитивных тестов. Разумеется, это не были тесты для приема в высшие учебные заведения; например, один тест был таким: Вилледа поместил мышей в радиальный лабиринт, заполненный непрозрачной жидкостью. В одной части лабиринта у самой поверхности воды была скрыта платформа, на которую можно было залезть, чтобы выбраться из воды. «Эти животные ненавидят быть мокрыми, — объяснил он. — Они сделают все, чтобы избежать этого».

Перед инъекциями плазмы мыши проходили через период обучения, в ходе которого они учились находить скрытую под водой платформу. Примерно через неделю их снова помещали в водный лабиринт. Молодые животные находили платформу почти мгновенно, тогда как старые животные беспомощно рыскали по коридорам, ошибаясь до 30 раз, прежде чем наконец находили сухой остров. «Это было печальное зрелище», — говорит Вилледа.

А потом Вилледа обнаружил нечто удивительное: после того как старым мышам в течение нескольких недель вводили молодую кровь, они вдруг стали находить платформу с первой-второй попытки. «Старая кровь каким-то образом разрушительно действует на головной мозг, — говорит Вилледа. — А в молодой крови есть что-то, что с возрастом мы теряем».

Когда мышей «принесли в жертву», он исследовал их головной мозг, особенно нейроны гиппокампа — отдела мозга, ответственного за пространственную память и навигацию. Под электронным микроскопом молодые нейроны имели «взъерошенный» вид из-за большого количества дендритных шипиков, помогающих образовывать соединения с другими нейронами. У старых животных дендриты имели гораздо меньше шипиков, словно подверглись обрезке со стороны ревностного садовника. Это снижало способность нейронов образовывать новые соединения и таким образом формировать новые воспоминания. Но когда старым мышам вводили молодую плазму, их нейроны снова становились «взъерошенными» — что, очевидно, помогало им запомнить (и впоследствии вспомнить) местоположение платформы в лабиринте. Молодая кровь восстановила старый мозг175.

«Мы увидели, что старение и связанный с ним спад были буквально обращены вспять, — сказал мне Вилледа, и в его голосе по-прежнему звучало неподдельное удивление. — Я всегда считал, что старение — это финишная прямая. Стоит вам на нее попасть, и пути назад уже нет. Но теперь я не уверен, что это так».

* * *

Теперь главный вопрос: что именно в молодой крови производит такой эффект?

И не только в головном мозге, кстати говоря. Другие исследования обнаружили, что кровь молодых животных омолаживает мышцы и кости старых животных. И Вилледа — не единственный, кто ищет ответ на этот вопрос. На другом конце страны, в Гарвардском университете, другой выпускник Стэнфорда также активно занимается поиском вещества, отвечающего за этот удивительный эффект омоложения. Гонка началась.

«Мы ищем не иголку в стоге сена, — сказала мне Эми Вейджерс, когда мы встретились с ней в ее офисе в Бостоне. — Мы ищем соломинку в стоге сена. В крови присутствует невероятное количество метаболитов, белков или факторов, и любой из них может оказаться той самой волшебной субстанцией».

Ее поиск длится вот уже десять лет, с тех пор как она стала частью команды, участвовавшей в возрождении метода парабиоза в начале 2000-х гг. После аспирантуры она начала работать с Ирвингом Вейсманом, прославленным стэнфордским биологом, впервые выделившим стволовые клетки из человеческой крови. Вместе с Томом Рандо Ирвинг Вейсман занимался изучением того, как стареющая кровь влияет на регенерацию мышц. В новаторской статье, опубликованной в 2005 г. в журнале Nature, исследователи сообщили, что в проведенных ими экспериментах молодая кровь улучшала способность старых мышей восстанавливать поврежденные мышцы176, а также чудесным образом способствовала исцелению их печени. Что-то в молодой крови заставляло старые клетки мышей «вспомнить молодость» — и начинать функционировать, восстанавливаться и обновляться так, как они делали это в прошлом.

Другими словами, старые клетки обладают определенным потенциалом, чтобы процветать и регенерироваться, но старая кровь мешает им это делать. Если это действительно так, то последствия этого открытия огромны: это означает, что даже в пожилом возрасте мы сохраняем способность к регенерации тканей. Остается только выяснить, как разблокировать этот потенциал — то есть найти вещество или вещества, которые служат триггерами. Поиски продолжаются вот уже десять лет, но ответ пока не найден.

Чтобы определить, что именно в молодой крови поворачивает часы старых клеток вспять, Вейджерс присоединилась к коман­де известного кардиолога и исследователя стволовых клеток Ричарда Ли, ее давнего партнера по велосипедным прогулкам (с которым мы познакомились в главе 6). Ли видел сотни изношенных сердец своих пожилых пациентов. Более молодым пациентам он мог помочь при помощи статинов, препаратов для нормализации артериального давления, а также установки стентов и клапанов. Но решить проблемы своих немолодых пациентов он был не в силах. Они страдали так называемой диастолической сердечной недостаточностью — состоянием, при котором сердечная мышца утолщается настолько, что желудочки перестают заполняться необходимым количеством крови. До сих пор метода лечения этого заболевания не существует.

«Двадцать лет ко мне приходят люди с этой проблемой, — сказал мне Ли, — а я абсолютно ничего не могу сделать!»

Тогда Вейджерс предложила попробовать парабиоз, чтобы посмотреть, может ли молодая кровь обновить старые сердца. Предварительные результаты оказались положительными, поэтому она решила попытаться выделить вещество, которое может быть ответственным за этот конкретный эффект. Вмес­те с исследователями из компании SomaLogic, находящейся в Колорадо, она сузила поиск до 13 «кандидатов», каждый из которых был некой разновидностью фактора роста. Тщательный анализ выявил одного наиболее вероятного победителя: так называемый фактор дифференциации роста 11 (growth differentiation factor 11, или GDF-11), который в избытке присутствует в крови молодых мышей и отсутствует в крови старых.

Мало того, биотехнологические компании уже производили GDF-11 для исследовательских целей, поэтому исследователи могли просто купить его и сделать инъекции своим мышам, как они и поступили. И — о чудо! — им удалось получить такой же эффект, как при парабиозе, только без жуткой операции: введение старым мышам GDF-11 в течение нескольких недель возвратило их старые утолщенные сердца к нормальному, «молодому» состоянию. Биологические часы были обращены вспять177, сообщили исследователи в мае 2013 г. До сих пор считалось, что «молодая кровь» действует в основном на стволовые клетки. Однако в сердечной мышце отсутствуют очень активные стволовые клетки, поэтому здесь должно происходить что-то другое.

Следующим шагом было изучение действия GDF-11 на мышцы старых мышей. Выяснилось, что он улучшает и их состояние тоже (прощай, саркопения!). Что еще удивительнее, этот фактор дифференциации роста 11, казалось, положительно влиял на головной мозг старых мышей, улучшая состояние кровеносных сосудов вокруг нервных стволовых клеток. У старых мышей улучшалось даже обоняние178.

Когда были получены эти результаты, Ли написал Вейджерс короткое сообщение: «Это может стать бомбой».

Она ответила: «Я знаю».

Они оказались правы: когда результаты обоих исследований были опубликованы в мае 2014 г. в одном и том же номере Science, они немедленно стали сенсацией. В настоящее время вместе с Ли Рубином, своим третьим соавтором, Вейджерс и Ли занимаются поиском возможных препаратов, способных активировать GDF-11; они запатентовали свои наработки и привлекли венчурный капитал для финансирования дальнейших исследований. Их цель — создать препарат, способный имитировать действие GDF-11 в организме или стимулировать его производство. (Инъекции самого GDF-11 являются слишком объемными, и его трудно вводить каждый день.) Пока это трио держит свои разработки в секрете, но, если им удастся достичь своей цели, они подарят миру препарат, который сможет лечить заболевания сердца, атрофию мышц и болезнь Альцгеймера.

«Этот белок воздействует на множество различных типов клеток в разных тканях, — говорит Вейджерс. — Возможно, именно в этом кроется причина той удивительной синхронности, с которой эти ткани реагируют на старение».

Но она также признает, что GDF-11 — вряд ли конец истории; скорее, это начало новой главы.

На той же неделе, когда вышли статьи Вейджерс и Ли, были опубликованы результаты еще двух важных исследований с использованием парабиоза. В журнале Nature Medicine Сол Вилледа сообщил о результатах своих экспериментов, в ходе которых плазма крови молодых мышей возвращала молодость старым нейронам. В тот же день исследовательница из России Ирина Конбой, также проходившая стажировку в лаборатории Тома Рандо в Беркли, сообщила о еще более интригу­ющем открытии: старые мышцы омолаживались в результате введения окситоцина179, гормона «доверия», который ассоциируется с сексом, любовью, родами и грудным вскармливанием — и вырабатывается даже от простых объятий. И никакого переливания крови.

Не все готовы ждать одобрения Управления по надзору над качеством пищевых продуктов и медикаментов: я знаю по крайней мере одного исследователя, который в частном порядке делает себе инъекции окситоцина в надежде достичь желанного эффекта омоложения. (Пока неизвестно, удалось ему это или нет.) Сол Вилледа и его наставник Тони Висс-Корей из Стэнфорда планируют провести собственные небольшие клинические испытания. Вместо того чтобы искать «соломинку в стоге сена», они собираются вводить пациентам с поздней стадией болезни Альцгеймера плазму крови, полученную от молодых доноров, чтобы добиться таких же эффектов омоложения, которые Вилледа получил у мышей.

Если им это удастся, можно представить себе разного рода страшные сценарии дальнейшего развития событий — такие как «Дональд Трамп покупает у нищих студентов их молодую кровь для переливания!», — поэтому вся надежда только на то, что команда Вейджерс первой изобретет свою таблетку молодости. И не нужно забывать об еще одной важной вещи: ученые пока ничего не знают о том, не могут ли все эти «факторы молодости» провоцировать рак.

А пока ученые ломают головы над этими проблемами, я удовольствуюсь самым простым и приятным средством омоложения — объятиями и любовью.

Эпилог. СМЕРТЬ СМЕРТИ

Миллионы людей жаждут бессмертия, но при этом не знают, чем занять себя в дождливый воскресный вечер.

Сьюзан Эртц

Я долго ждал, чтобы сообщить вам действительно плохую новость о старении.

И теперь, с дрожью в голосе, я информирую вас о том, что у вас, вероятно, есть герпес. И, еще вероятнее, он есть у вашей матери. И у вашего отца.

Не падайте в обморок: я говорю не о том герпесе, который весной выскакивает у вас на губах. Я говорю о разновидности герпеса, который имеет прямое отношение к старению нашей иммунной системы.

Итак, что это за напасть? Вирусов герпеса существует великое множество, включая ветрянку, опоясывающий лишай и тот самый герпес на губах «от поцелуев». Но есть и другая, гораздо более распространенная его разновидность, присутствующая в организме по меньшей мере половины всех взрослых американцев, но обычно не вызывающая никаких симптомов. Большинство людей даже не знают, что носят в себе этот вирус.

Он называется цитомегаловирусом180 (ЦМВ). Звучит как нечто из области научной фантастики, однако ЦМВ вполне реален: это один из самых распространенных и универсальных вирусов, способных инфицировать человеческий организм. Благодаря своему огромному геному ЦМВ способен атаковать фактически все виды человеческих клеток. Обычно он кажется довольно безобидным и тихо сидит внутри нас, никак себя не проявляя (иногда он может вызывать мононуклеозоподобный синдром, но это происходит достаточно редко). Но на деле он далеко не безвреден. «Есть некоторые свидетельства того, что ЦМВ способен приносить некоторую пользу, когда мы молоды, например поддерживать иммунную систему в состоянии повышенной боевой готовности, — говорит Янко Николич-Зугич, ведущий специалист по старению иммунной системы из Аризонского университета. — Но когда мы перестаем быть молодыми, он начинает причинять только вред».

Проблема проистекает из того, как функционирует наша иммунная система — и как она стареет. Задача нашей иммунной системы — защищать организм от патогенных микроорганизмов и чужеродных веществ. Когда в наш организм попадает инфекция, мы вырабатываем Т-клетки, предназначенные специально для борьбы с этой конкретной инфекцией. Эти Т-клетки производятся в тимусе (или вилочковой железе) — губчатом органе, расположенном примерно в середине грудной клетки. Если вы когда-нибудь были в хорошем французском ресторане, вы, вероятно, видели тимус в меню под названием «сладкое мясо» (или ris de veau). Но, как вы могли догадаться, примерно после наступ­ления 20 лет наше собственное «сладкое мясо» начинает атрофироваться и в конце концов перерождается в жировую ткань. Это одно из первых, чего мы лишаемся с возрастом, причем лишаемся почти полностью. Это кажется достаточно странным для такого важного органа, но таково старение: самое важное страдает в первую очередь.

Такая инволюция тимуса необратима. В конечном итоге тимус перестает реагировать на новые инфекции, хотя у нас сохраняются армии Т-клеток, которые помнят инфекции, атаковавшие нас в прошлом.

То есть в молодости наша иммунная система способна справиться практически с любым незнакомым патогеном, а в пожилом возрасте нас может убить даже самый маловредный микроб или вирус — если мы никогда не сталкивались с ним раньше. Наглядным примером может служить мой дед, который, несмот­ря на свое крепкое здоровье, умер от последствий обычной инфекции мочевыводящих путей. Именно из-за старения иммунной системы пожилым людям так важно делать прививки от гриппа: хотя респираторные инфекции официально не относятся к числу возрастных заболеваний, в действительности они убивают больше людей, чем болезнь Альцгеймера, и особенно часто затрагивают людей пожилого возраста.

Главная причина, почему ЦМВ представляет собой проблему, объясняет Николич-Зугич, заключается в том, что этот вирус оттягивает на себя значительную часть мощности нашей иммунной системы — подобно тому, как онлайн-игра вашего ребенка занимает почти весь трафик интернет-канала и лишает вас возможности посмотреть любимый сериал на стрим-ТВ. «Этот единственный вирус может задействовать половину ресурсов вашей иммунной системы, — говорит он. — Инфицированные им люди в среднем живут на три-четыре года меньше. Однако люди сосуществуют с ЦМВ на протяжении сотен тысяч лет. И коэволюция между этим вирусом и нами поражает».

Как хороший эволюцио

Наши рекомендации