Тема 1. физическая природа и источники радиационной опасности

В.Т. Пустовит

ЗАЩИТА НАСЕЛЕНИЯ И
ХОЗЯЙСТВЕННЫХ ОБЪЕКТОВ В
ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ.
РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

Часть II
РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

Курс лекций

Минск

УДК 614.876(076.6)

тема 1. физическая природа и источники радиационной опасности - student2.ru ББК 22.383

П89

Серия основана в 2001 году

Рецензент – профессор кафедры физики факультета радиофизики и электроники Белорусского Государственного университета, доктор технических наук Сидоренко А.В.

Рекомендовано к изданию Комиссией по приемке и аттестации электронных версий учебных и учебно-методических материалов Академии управления при Президенте Республики Беларусь.

Печатается по решению редакционно-издательского совета Академии управления при Президенте Республики Беларусь.

Пустовит В.Т.

П89Защита населения и хозяйственных объектов в чрезвычайных ситуациях. Радиационная безопасность.Часть II: Курс лекций / Пустовит В.Т. –Мн.: Академия управления при Президенте Республики Беларусь, 2005. – 196с.

ISBN 985-457-378-8(ч.II)

Курс лекций предназначен для студентов системы открытого образования Академии управления при Президенте Республики Беларусь, обучающихся по специальности "Государственное управление и экономика".

УДК 614.876(076.6)

ББК 22.383

ISBN 985-457-378-8(ч.II) ã Пустовит В.Т., 2005
ISBN 985-457-376-1   ã Академия управления при Президенте Республики Беларусь, 2005

ОТ АВТОРА

В этом сборнике изложено содержание теоретических вопросов по второму разделу «Радиационная безопасность» дисциплины «Защита населения и объектов в чрезвычайных ситуациях. Радиационная безопасность» для открытого образования студентов Академии Управления при Президенте Республики Беларусь.

Практические вопросы в лекциях опущены и изучаются на занятиях с использованием компьютерных обучающих программ и путем решения расчетных задач. При этом используются следующие обучающие и тестирующие программы:

1. Правила поведения и действия населения во время стихийных бедствий;

2. Правила поведения и действия населения по выживанию в техногенных чрезвычайных ситуациях;

3. Действия населения по выживанию в экологических чрезвычайных ситуациях.

4. Правила поведения по выживанию в биолого-социальных и социальных чрезвычайных ситуациях.

Кроме того, значительная часть как теоретического, так и практического материала изложена в учебно-методических материалах по практическим занятиям для студентов.

Учебный процесс студентов открытого образования включает следующие этапы:

1. Чтение преподавателем установочной лекции с выдачей списка вопросов (в том числе по электронной почте), которые будут включены в экзаменационные билеты.

2. Инструктаж студентов по использованию информационной системы дистанционного обучения.

3. Доведение до студентов перечня тем занятий, которые должны отработать студенты данного профиля обучения (специализации) с использованием системы открытого обучения.

4. Передача результатов выполнения заданий каждым студентом в центр обработки информации в Академии Управления и передача студенту результатов проверки выполненной работы.

5. Доведение порядка дистанционного тестирования каждого студента и сроков тестирования.

6. Допуск студента к экзамену по результатам тестирования и выполнения заданий по практическим занятиям.

7. Прием экзаменов.

Примечания:

1. Вопросы, выносимые на экзамен, ежегодно уточняются. Изменения в текущем учебном году возможны как исключение после обсуждения на заседании кафедры.

2. В компьютерных программах преподаватель может добавлять или изменять вопросы только по окончании учебного года.

СОДЕРЖАНИЕ

ОТ АВТОРА.. 3

РАЗДЕЛ 2. РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ.. 9

ТЕМА 1. ФИЗИЧЕСКАЯ ПРИРОДА И ИСТОЧНИКИ РАДИАЦИОННОЙ ОПАСНОСТИ.. 9

Лекция 1. Радиоактивные превращения ядер. 9

Общие сведения об атоме и атомном ядре. 9

Явление радиоактивности. 12

Основной закон радиоактивного распада радионуклида. 16

Контрольные вопросы к лекции №1. 22

Лекция 2. Ионизирующие излучения, их характеристики и методы измерений. 23

Краткая характеристика ионизирующих излучений. 23

Взаимодействие ионизирующих излучений с веществом.. 25

Характеристики ионизирующих излучений.
Единицы измерения. 36

Основные способы обнаружения и измерения ионизирующих излучений 43

Контрольные вопросы к лекции №2. 44

Лекция 3. Источники ионизирующих излучений. 45

Космическое излучение. 45

Земная радиация. 47

Антропогенные источники ионизирующих
излучений. 50

Контрольные вопросы к лекции №3. 55

ТЕМА 2. ОСНОВЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ ЖИВЫХ ОРГАНИЗМОВ.. 56

Лекция 4. Биологическое действие ионизирующих излучений 56

Воздействие ионизирующих излучений на биологическую ткань 56

Механизм воздействия радиации на молекулы и клетки. 57

Радиочувствительность. Реакция органов и систем человека на облучение. 70

Детерминированные и стохастические эффекты. Степени лучевой болезни. 80

Контрольные вопросы к лекции №4. 89

Лекция 5. Основные принципы, критерии и нормы радиоактивной безопасности. 90

Введение. 90

Международные нормы радиационной
безопасности. 91

Нормы радиационной безопасности НРБ-2000. 102

Санитарные нормы и правила. 109

Методы и средства индивидуальной защиты
и личной гигиены.. 114

Контрольные вопросы к лекции №5. 118

ТЕМА 3. КАТАСТРОФА НА ЧЕРНОБЫЛЬСКОЙ АЭС
И ЕЕ ПОСЛЕДСТВИЯ ДЛЯ РЕСПУБЛИКИ БЕЛАРУСЬ.. 119

Лекция 6. Катастрофа на Чернобыльской АЭС и особенности радиоактивного загрязнения
территории Республики Беларусь. 119

События, приведшие к аварии на ЧАЭС.. 119

Авария, ее развитие и ликвидация. 122

Выбросы и особенности радиоактивного
загрязнения территории Республики Беларусь. 123

Контрольные вопросы к лекции №6. 139

Лекция 7. Последствия радиоактивного
загрязнения территорий для Республики Беларусь. 140

Социально-экономические потери Республики Беларусь. 140

Последствия катастрофы на Чернобыльской АЭС
для здоровья населения. 141

Последствия катастрофы на Чернобыльской АЭС
для животного мира. 146

Последствия катастрофы на Чернобыльской АЭС
для растительного мира. 149

Контрольные вопросы к лекции №7. 151

ТЕМА 4. МЕРОПРИЯТИЯ ПО РАДИАЦИОННОЙ
ЗАЩИТЕ.. 152

Лекция 8. Мероприятия по радиационной защите и радиационной безопасности населения. 152

Основные мероприятия по радиационной защите. 152

Краткая характеристика мероприятий по радиационной защите и радиационной
безопасности населения. 154

Контрольные вопросы к лекции №8. 170

Лекция 9. Ликвидация последствий радиоактивного загрязнения территорий. 171

Дезактивация территории, объектов, техники и продуктов питания 171

Организация агропромышленного производства в условиях радиоактивного загрязнения. 185

Контрольные вопросы к лекции №9. 190

ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ ПО РАЗДЕЛУ «РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ». 191

Практические вопросы по первому и второму разделам.. 193

ЛИТЕРАТУРА.. 195


РАЗДЕЛ 2. РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

Явление радиоактивности

Впервые способность ядер тяжелых элементов самопроизвольно распадаться была обнаружена Беккерелем в 1896 году. Позднее Резерфорд и супруги Кюри показали, что ядра некоторых веществ испытывают последовательные превращения, образуя радиоактивные ряды, где каждый член ряда возникает из предыдущего, причем никакими внешними физическими воздействиями (температура, электрические и магнитные поля, давление) нельзя повлиять на характеристики распада.

Способность некоторых неустойчивых атомных ядер самопроизвольно превращаться в ядра других элементов с испусканием различных видов радиационных излучений называют радиоактивностью, а изотопы, ядра которых способны самопроизвольно распадаться – радионуклидами.

Таблица 1

Значения величин а1 и а2

Величины а1 и а2 1 и а2 Период полураспада Т
с мин ч сут год
а1 2,4×10–24 1,44×10–22 8,62×10–21 2,07×10–19 7,56×10–17
а2 8,86×10–14 5,32×10–12 3,19×10–10 7,66×10–9 2,80×10–6

Представленная на графике (рис.2) зависимость определяет скорость распада одного радионуклида. Однако, в случае превращения одного радионуклида в другой (дочерний) радионуклид, характер этой зависимости изменится. Большинство естественных радионуклидов имеют длинные цепи превращений одних радионуклидов в другие, так называемые радионуклидные ряды, пока, наконец, они не превратятся в стабильный изотоп.

Контрольные вопросы к лекции №1

1. Понятие радионуклида.

2. Почему ядра одних изотопов претерпевают радиоактивный распад, а другие нет?

3. Явление радиоактивности (примеры альфа-распада и бета-распада).

4. Особенности спада радиоактивности по основному закону радиоактивного распада.

5. Пересчитать 5 Ки/км2 в Бк/кг и 5 Ки в Бк.

6. Пересчитать 100 Бк/кг в Ки/м2.

Гамма-излучение

Взаимодействие гамма-квантов с веществом может сопровождаться фотоэффектом, комптоновским рассеянием и образованием электрон-позитронных пар. Вид эффекта зависит от энергии гамма-кванта:

Ек = hν – Еи, (1)

где: h – постоянная Планка; ν – частота излучения; Еи – энергия ионизации соответствующей атомной оболочки (энергия связи выбитого электрона из атома).

Фотоэффект возникает при Е = 10 эВ–1 МэВ, то есть при относительно малых значениях энергий. В этом случае вся энергия гамма-кванта передается орбитальному электрону, и он выбивается из орбиты (рис.3).

Выбитый электрон называется фотоэлектроном. В результате его отрыва в атоме появляется свободный уровень, который заполняется одним из наружных электронов. При этом, либо испускается вторичное мягкое характеристическое излучение (процесс флюоресценции), либо энергия передается одному из электронов, который покидает атом (электрон Оже). Флюоресцентное излучение наблюдают в материалах с большим атомным номером. В материалах с низким атомным номером преобладает образование электронов Оже. Вероятность фотоэффекта увеличивается с ростом атомного номера материала и уменьшается с ростом энергии фотона.

С ростом энергии гамма-квантов явление фотоэффекта становится все меньше, а при энергии 100–200 кэВ начинает преобладать Комптон эффект.

Комптоновским рассеиванием называется процесс взаимодействия фотонного излучения с веществом, в котором фотон в результате упругого столкновения с орбитальным электроном теряет часть своей энергии и изменяет направление своего первоначального движения, а из атома выбивается электрон отдачи (комптоновский электрон) (рис.4).

Энергия комптоновского электрона равна:

Е = hν – hν\ (2)

Образование электронно-позитронных пар. Если энергия гамма кванта превышает 1,02 МэВ, то он поглощается ядром, а из последнего одновременно вылетают электрон и позитрон (рис.5). Таким образом, гамма кванты способны косвенно ионизировать вещество. Возникшей паре передается вся энергия гамма кванта за вычетом энергии покоя пары, равной 1,022 МэВ.

Следует отметить, что позитрон нестабилен в присутствии электронов среды. Он быстро исчезает за счет аннигиляции с одним из электронов. В этом случае испускается 2 фотона с энергией по 0,511 МэВ.

Рассмотрим, проникающую способность гамма-квантов.

Как уже отмечалось, гамма-квант образуется при переходе ядра в более низкие энергетические состояния. Не имея массы, они не могут замедляться в среде, а лишь поглощаются или рассеиваются.

тема 1. физическая природа и источники радиационной опасности - student2.ru

При прохождении через вещество их энергия не меняется, но уменьшается интенсивность излучения по следующему закону (рис.6):

I = Iо е–- µх(3)

где: I = Еγn/t; n/t – число гамма-квантов, падающих на единицу поверхности в единицу времени (плотность потока гамма-квантов); m– коэффициент поглощения; х – толщина поглотителя (вещества), см; Iо – интенсивность квантов до прохождения поглотителя, МэВ/с.

В формуле (3) величину µможно найти в таблицах, ноона не несет прямой информации о степени поглощения гамма лучей веществом.

В практических расчетах удобно пользоваться и такой табличной величиной, как «толщина слоя половинного ослабления». Толщина слоя половинного ослабления – это такая толщина слоя материала, проходя которую интенсивность излучения гамма-квантов уменьшается в 2 раза. Запишем уравнение (3) в виде:

Iо /I = е– µх (4)

Полагая Iо/I = 2 и логарифмируя правую и левую части уравнения (4), получим: ln2 = md, d = 0,693/m.

Тогда, формула (4) примет вид:

I = Iо е– 0,693х/d (5)

Толщина слоя половинного ослабления dберется из таблиц, но если они отсутствуют, то эта величина может быть вычислена приближенно по плотности материала ρ:

d = 13/r, (6)

где: 13 см – слой воды, ослабляющий гамма-излучение в 2 раза;
r – плотность материала, г/см3. Для некоторых материалов величины d представлены в таблицах.

       
    тема 1. физическая природа и источники радиационной опасности - student2.ru
 
 
Рис.6. К оценке ослабления гамма-излучений веществом

Выражение (5) можно преобразовать следующим образом:

Косл = I0/I = ехр (0,693х/d), (7)

где Косл – коэффициент ослабления гамма-излучения проходящего через преграду толщиной хи значением слоя половинного ослабления для данного материала d (рис.6). Выражение (7) можно упростить, полагая, что 0,693 = Ln2, получим:

Косл = 2х/d (8)

Расчеты показывают, что проникающая способность гамма-излучения в воздухе – десятки и сотни метров, в твердых телах – многие сантиметры, в биологической ткани человека часть гамма-квантов проходят через человека насквозь, другие поглощаются.

Бета-излучение

В отличие от фотонов заряженные частицы теряют свою энергию в конденсированной фазе сравнительно небольшими порциями в результате многократных столкновений с электронами среды.

Прохождение бета-частиц через вещество сопровождается упругими и неупругими соударениями с ядрами и электронами тормозящей среды.

Упругое рассеяние бета-частиц на ядрах более вероятно и осуществляется при относительно низких энергиях электронов
Еβ < 0,5 МэВ (рис.7). Упругое рассеяние бета-частиц на электронах в Z раз (Z – величина заряда ядра) менее вероятно, чем на ядрах (рис.8). Возможен в редких случаях и сдвиг ядер атомов кристаллической решетки (рис.9).

При энергии бета-частиц выше энергии связи электрона c ядром (до ≈ 1 МэВ) основным механизмом потерь энергии является неупругое рассеяние на связанных электронах, приводящее к ионизации и возбуждению атомов (рис.10).

При больших энергиях электронов главным механизмом потерь энергии является радиационное торможение, при котором возникает тормозное излучение.

тема 1. физическая природа и источники радиационной опасности - student2.ru

Одним из вариантов неупругого взаимодействия является К–захват.

Таким образом, процессы взаимодействия бета-частиц со средой характеризуются радиационным торможением и относительно большой потерей энергии или значительным изменением направления их движения в элементарном акте. Вследствие этого взаимодействия интенсивность пучка бета-частиц уменьшается почти по экспоненте с ростом толщины поглощающего слоя х, т.е. для бета-частиц справедлива формула (4).

Путь бета-частиц в веществе представляет ломаную линию, а пробег бета-частиц одинаковых энергий имеет значительный разброс. Это связано с тем, что масса бета-частиц крайне мала, поэтому вероятность упругого рассеяния на ядрах больше, чем у тяжелых частиц. В таблице 2 показана средняя глубина пробега бета-частиц в воздухе, биологической ткани и для примера в алюминии.

Итак, бета-частицы не имеют точной глубины проникновения, так как обладают непрерывным энергетическим спектром. Для грубой оценки глубины пробега бета-частиц пользуются приближенными формулами. Одна из них:

Rср/Rвозд = rвозд/rср (8)

где: Rср – длина пробега в среде; Rвозд – длина пробега в воздухе, Rвозд = 450 Eb; rвозд и rср – плотность воздуха и среды соответственно; Eb – энергия бета-частиц.

Альфа-излучение

Энергия альфа-частиц находится в пределах 4–10 МэВ, скорость примерно 20000 км/с. Имея большую массу и значительную энергию, они ее расходуют в основном на неупругое рассеяние на электронах атомов. Таким образом, альфа-частицы обладают большой ионизирующей способностью. В редких случаях альфа-частица может проникнуть в ядро и вызвать ядерную реакцию. Полная ионизация, создаваемая альфа-частицами на всем пути в среде, составляет примерно 120–150 тысяч пар ионов.

Таблица 2

Пробеги бета-частиц

Максимальная энергия бета-частиц, Е, МэВ Воздух, см Биологическая ткань, мм Алюминий, мм
0,01 0,13 0,002 0,0006
0,02 0,52 0,008 0,0026
0,03 1,12 0,018 0,0056
0.04 1,94 0,030 0,0096
0,05 2,91 0,046 0,0144
0,06 4,03 0,063 0.0200
0.07 5,29 0,083 0,0263
0,08 6,93 0,109 0,0344
0,09 8,20 0,129 0,0407
0,1 10,1 0,158 0,050
0,5 1,87 0,593
1,0 4,80 1,52
1,5 7,80 2,47
2,0 11,1 3,51
2,5 14,3 4,52
3,0 17,4 5,50
5,0 29,8 9,42
60,8 19,2

Удельная ионизация изменяется от 25 до 60 тысяч пар ионов на 1 см пути в воздухе. Удельная ионизация увеличивается к концу пробега альфа-частиц. Это связано с тем, что при прохождении через вещество энергия альфа-частицы, а значит, и ее скорость уменьшается. В результате увеличивается вероятность ее взаимодействия с электронами атома. Это приводит к увеличению ионизации вещества, достигая максимума в конце пробега.

Альфа-частицы, имея двойной электрический заряд и большую массу буквально «продираются» через атомы вещества. Вследствие сильных потерь энергии альфа-частицы проникают на незначительную глубину.

В отличие от фотонов и бета-частиц длина пробега альфа-частиц экспоненциальному закону не подчиняется. Поэтому пользуются империческими формулами. Так, например, для воздуха при 0°С и давлении 760 мм рт. ст. (0,1Па), длина пробега альфа-частиц с энергией от 3 до 8 МэВ может быть рассчитана по формуле Гейгера:

Ra = (Ea2/3) /3, (см) (9)

Длина пробега Rαальфа-частиц в воздухе при температуре 15°С и давлении 0,1 Па определяется по формулам:

Ra = 0,318 Ea2/3 , (см) – если Ea = (4–7) МэВ; (10)

Ra = 0,56 Ea2/3 , (см) – если Ea < 4 МэВ. (11)

где: Ea – энергия альфа-частиц.

Пробег альфа-частиц в веществе, отличном от воздуха определяют по формуле Брэгга:

Ra = 10–4(M Ea3)1/2 /r, см (12)

где: М – атомная масса; r– плотность вещества, г/см3.

Расчет по приведенным формулам показывает, что пробег альфа-частиц в воздухе не превышает 10 см, а в биологической ткани 120 мкм, т.е. реальную опасность альфа частицы представляют при попадании их во внутрь организма.

В таблице 3 показана длина пробега альфа-частиц в воздухе, биологической ткани и алюминии. Алюминий взят в качестве примера, так как именно металлы чаще всего применяются для защиты человека и электронных схем от ионизирующих излучений.

Сравнительная характеристика способности проникновения излучений через различные вещества с учетом толщины преграды поясняется рис.11.

Таблица 3

Таблица 4

Таблица 5

Взвешивающие коэффициенты WT*

Ткань или орган Коэффициент WTI
Половые железы 0,20
Красный костный мозг 0,12
Толстый кишечник 0,12
Легкие 0,12
Желудок 0,12
Мочевой пузырь 0,05
Молочные железы 0,05
Печень 0,05
Пищевод 0,05
Щитовидная железа 0,05
Кожа, клетки костных поверхностей 0,01
Остальные органы 0,05

Подчеркнем, что и эквивалентная и эффективная доза являются величинами, которые предназначены для применения в радиационной безопасности для оценки вероятности стохастических эффектов.

Отметим, что 1Рсоответствует0,873 радав воздухе и 1Рсоответствует0,95 радав биологической ткани.

Полувековая эквивалентная доза. Поглощенная доза при внешнем облучении формируется в то самое время, когда ткань или орган находятся в поле излучения. Однако при внутреннем облучении формирование суммарной поглощенной дозы растягивается во времени, и она накапливается постепенно по мере радиоактивного распада радионуклида и его выведения из организма. Распределение во времени поглощенной дозы зависит от типа радионуклида, его физико-химической формы, характера поступления и ткани, в которой он откладывается. Для учета этого распределения и введено понятие полувековая эквивалентная доза.Она представляет собой временной интеграл мощности эквивалентной дозы в определенной ткани (органе). В качестве предела интегрирования МКРЗ установила 50 лет для взрослых и 70 лет для детей (рис.12).

Полувековая эффективная доза может быть получена, если умножить полувековые эквивалентные дозы в отдельных органах на соответствующие весовые множители WT и затем их просуммировать.

Коллективная эквивалентная доза (Sт)в ткани Т применяется для выражения общего облучения конкретной ткани у группы лиц на основе таблицы 5.

Коллективная эффективная доза (S)относится, в целом, к облученной популяции. Она равна произведению средней эффективной дозы на число лиц в облученной группе. В определении коллективной эквивалентной и коллективной эффективной доз не указано время, за которое она получена. Поэтому обычно указывается и время, за которое получена доза для группы лиц. Единицы коллективных доз – чел*Зви чел*бэр.

       
    тема 1. физическая природа и источники радиационной опасности - student2.ru тема 1. физическая природа и источники радиационной опасности - student2.ru
 
 
Рис.12. Мощность эквивалентной дозы в органе (ткани) после поступления радионуклида с коротким и длинным периодом полувыведения  

Космическое излучение

Космическое излучение делят на галактическое, межгалактическое и солнечное. Их также делят на первичное и вторичное излучение.

Галактическое и межгалактическое космическое излучение – это поток протонов (92%) альфа-частиц (7%). Остальное (около 1%) – это в основном, ядра легких элементов: лития, бериллия, азота, углерода, кислорода, фтора и др. Средний возраст галактического излучения от 1 млн. до 10 млн. лет, а плотность потока частиц величина постоянная и составляет 1–2 частицы/см2с.

Низкое содержание нейтронов в космических лучах объясняется тем, что нейтрон в свободном состоянии неустойчив и распадается на протон и электрон. Время его «жизни» составляет около16 минут. Считается, что электроны, позитроны и гамма-лучи поглощены космической пылью, поэтому их очень мало в составе космического излучения.

Галактическое излучение обладает очень высокой энер-
гией – 1012 – 1015 МэВ. Считается, что такая большая энергия объясняется разгоном частиц магнитными полями звезд.

Такое излучение губительно для всего живого. К счастью, протоны задерживаются радиационными поясами Земли, их энергия несколько уменьшается.

Существование поясов связано с наличием магнитного поля Земли. Заряженные частицы обычно движутся вдоль магнитных силовых линий по спирали. Имеется два радиационных пояса. Внешний радиационный пояс находится на расстоянии от 1 до 8 радиусов Земли, внутренний на расстоянии 400–10000 км. Наибольший прорыв космического излучения на полюсах, поэтому Северный и Южный полюса получают больше космической радиации.

Частично потерявшие энергию космические лучи попадают в атмосферу и ею поглощаются, вызывая вторичное излучение, представляющее почти все известные частицы и фотоны.

Первичное излучение преобладает на высотах 45 км и выше, а вторичное излучение достигает максимальной величины на высотах 20–25 км. На широте г. Минска человек получает на Земле 50 мрад/год, но с ростом высоты интенсивность облучения с каждым километром увеличивается вдвое.

Космические лучи, проходя через атмосферу, вызывают появление космогенных радионуклидов, которых насчитывается около 20. Наиболее значительные из них тритий, углерод-14, берилий-7, сера-32, натрий-22, 24. Эти радионуклиды, распадаясь, испускают бета-частицы. Наиболее опасными из них являются тритий (период полураспада 12,3 года) и углерод-14 (период полураспада – 5730 лет). Оба радионуклида непрерывно возникают и непрерывно распадаются. Существует определенное равновесие в природе и всегда имеется некоторый его запас. Смешиваясь с углеродом и водородом, тритий и углерод-14 попадают в воду, в человека, в животных, в растения и представляют определенную угрозу для жизни и здоровья человека.

Углерод-14 поступает в организм человека через желудочно-кишечный тракт и через легкие. В организме распределяется равномерно. Период биологического полувыведения из организма - около 200 суток. Он вызывает трансмутационный эффект: встраиваясь в азотистые основания нуклеиновых кислот, углерод при распаде превращается в стабильный азот-14, что вызывает изменение структуры азотистых оснований ДНК, в результате чего меняется смысл генетического кода. Эти изменения не поддаются репарации, и их доля от всех мутаций составляет около 10%.

Наша справка. С помощью углерода-14 можно определить по останкам людей или животных время их смерти. Пока человек или животное живые, то идет постоянный процесс обновления углерода. После смерти этот процесс прекращается и начинается процесс распада углерода-14. Зная начальное количество и период полураспада можно определить время, прошедшее после смерти животного или человека.

Вклад в космическое излучение вносят и вспышки на Солнце. В этом случае происходит выброс в космическое пространство протонов с энергией до 40 МэВ, иногда энергия достигает и 100 МэВ. Однако, по сравнению с галактическим излучением эта энергия незначительна.

Человек, живущий на уровне моря, получает в среднем от космического облучения 0,315 мЗв/год, в том числе за счет внешнего облучения – 0,3 мЗв/год и за счет внутреннего облучения 0,015 мЗв/год.

Земная радиация

По мнению большинства ученых Солнечная система и планета Земля образовались в результате космического взрыва.
В начале практически все химические элементы Земли были радиоактивными, так как в ядрах атомов был избыток протонов или нейтронов. Почему так произошло науке точно неизвестно.
С тех пор на планете Земля идет процесс распада радионуклидов.

Поэтому, в любой почве, в воздухе, в воде, в живых организмах всегда имеются в незначительных количествах радионуклиды, но больше всего их в гранитах, в глиноземах, в песчаниках, в известняках. Возраст Земли 5,3 млрд. лет, поэтому на Земле сохранились только радионуклиды с большим периодом полураспада, остальные распались.

Радионуклиды земного происхождения подразделяются на радионуклиды средней части Периодической таблицы Д.И.Менделеева и на радиоактивные семейства тяжелых элементов.

Родоначальником семейства урана является уран-238 с периодом полураспада 4,5 млрд. лет.

Родоначальником семейства тория является торий-232 с периодом полураспада 10 млрд. лет.

Родоначальником семейства актиния является уран-235 с периодом полураспада 700 лет.

Конечный продукт распада всех семейств – свинец.

Во всех трех семействах один из продуктов распада – газ. В семействе урана это радон, в семействе тория – торон, в семействе актиния – актион. Последние два изотопы радона. Именно газ попадает в воздух, почву, растворяется в воде и попадает, наконец, в организм человека.

В Республике Беларусь таким газом является радон. Человек половину земной радиации получает именно от радона. Радон повсеместно выделяется из земли, воды, стройматериалов.

Анализ показывает, что в типичный дом поступает радона: из почвы – 70%, из внешнего воздуха – 13%, из стройматериа-
лов – 7%, из воды – 5–10%, из природного газа – 4%, от других источников – 2%.

Это бесцветный инертный газ, не имеющий вкуса и запаха, тяжелее воздуха примерно в 7,5 раз. Являясь альфа-излучателем, радон является причиной заболеваний раком легких, желудка и других органов. Особенно опасен радон для легких, надпочечников, гонад и костного мозга.

Следует помнить, что концентрация радона в закрытых помещениях летом выше не менее чем в 8 раз, а в зимнее время выше в 5000 раз по сравнению с минимальным фоном. Обычно концентрация радона на кухне примерно в 40 раз выше, чем в жилой ком нате. Высокое содержание радона в ванне, в спальных помещениях. Исследования в квартирах жителей г.Минска и некоторых других городов показали, что в ванной комнате объемная активность составила 8,5–9 кБк/м3, на кухне – 3–3,5 кБк/м3, в жилых помещениях 0,2 кБк/м3.

С геологической точки зрения около 40% территории Республики Беларусь являются потенциально радоноопасными. Исследования содержания радона в квартирах в летнее время показали, что оно по Минску и в большинстве городов составляет
30–35 Бк/м3, но в Дзержинском районе Минской области оно достигало 400 Бк/м3. Имеются требования НРБ-2000 по содержанию радиоактивности в строительных материалах.

Для ослабления воздействия радона на организм человека необходимо проветривать помещения не менее 5 часов в сутки, во время кипения воды в чайнике или другой закрытой посуде необходимо открывать на несколько секунд крышку, чтобы радон испарился из воды. Сушка белья должна быть вне помещений, а после стирки ванна должна быть хорошо проветрена. Следует помнить, что и при сжигании газа на кухне также необходимо проветривать помещение, так как из природного газа также выделяется радон. Так как, радон является альфа-излучателем и выделяется, в том числе и из стен, то их рекомендуется или красить или оклеивать обоями.

Справка.Ученые обнаружили и следующие противоречия: в зонах с высокими уровнями радиации заболеваемость раком иногда наблюдается даже меньше, чем в зонах с минимальным радиационным фоном. Одновременно в зонах с повышенным радиационным фоном рождаемость в 2 раза меньше.

Как уже отмечалось, в средней части таблицы Менделеева находятся 12 радионуклидов с большим периодом полураспада, это: калий-40, кальций-28, церий-132, индий-115, лантан-138, рубидий-87 и другие. Однако, только калий-40 и рубидий-87 оказывают существенное влияние на здоровье человека, так как являются элементами биологической ткани.

В Республике Беларусь радионуклиды находятся, в основном, в верхнем 30-сантиметровом слое почвы. На некоторых участках, например активность калия-40 достигает 1–2 Кu/км2.

По подсчетам НКДАР ООН средняя эффективная доза внешнего облучения, которую человек получает за год от земных источников естественной радиации, составляет 0,35 мЗв.

Таким образом, от естественного радиационного фона человек получает дозу: от радона – около 55%, от калия-40 – около 13%, от космических лучей – 15–16%, от других естественных источников около 15%.

Таблица 6

Таблица 7

Таблица 8

Радиационные повреждения

Уровень биологической организации Радиационные повреждения
Молекулярный Повреждение ферментов, ДНК, РНК, нарушение обмена веществ
Субклеточный Повреждение клеточных мембран, ядер, хромосом, митохондрий, лизосом
Клеточный Остановка деления и гибель клеток, трансформация в злокачественные клетки
Тканевой, органный Повреждение центральной нервной системы, костного мозга, желудочно-кишечного тракта
Организменный Смерть или сокращение продолжительности жизни
Популяционный Изменение генетических характеристик в результате мутаций

Молекула воды

Наиболее многочисленными в организме человека являются молекулы воды. При облучении молекул воды ионизирующими излучениями образуются различные радикалы:

тема 1. физическая природа и источники радиационной опасности - student2.ru тема 1. физическая природа и источники радиационной опасности - student2.ru Н2О Н2О+ + еН2О* Н* + ОН*

тема 1. физическая природа и источники радиационной опасности - student2.ru тема 1. физическая природа и источники радиационной опасности - student2.ru Н2О Н+ + ОН* Н* + ОН* Н2О*

тема 1. физическая природа и источники радиационной опасности - student2.ru тема 1. физическая природа и источники радиационной опасности - student2.ru Н2О + е Н2О* ОН* + ОН* Н2О2

Н2О+ + Н2О Н3О+ + ОН*

Свободные радикалы Н*, ОН* особенно химически активны. Время их жизни 10–15с. За это время они либо реагируют между собой с образованием молекулы воды, пероксидов водорода, либо с растворенным субстратом.

Продукты радиолиза воды (пероксид водорода) вступают в реакцию с липидами, белками, что приводит к гибели тканевых элементов, разрушению надклеточных структур (нитей хроматина), происходит разрыв углеродных связей, нарушения ферментативных систем, синтеза ДНК, белка. Нарушаются обменные процессы в организме. В связи с нарушением обмена веществ и энергии прекращается и замедляется рост тканей, наступает гибель клеток. Всасывание продуктов клеточного распада вызывает отравление организма, что приводит к преждевременному старению.

В организме человека имеются «гигантские молекулы» – это нуклеиновые кислоты, белки и полисахариды. Основу жизни на Земле составляет молекула ДНК (дезоксирибонуклеиновой кислоты). Она входит в состав клеток.

Молекула ДНК

Из основ биологии извест

Наши рекомендации