Визуализация строения мозга с помощью метода ядерно-магнитного резонанса
Метод ядерно-магнитного резонанса (ЯМР) позволяет визуализировать строение мозга, как и при компьютерной томографии, но он не связан с использованием радиоактивных лучей. Вокруг головы испытуемого создается очень сильное магнитное поле, которое воздействует на ядра атомов водорода, имеющих внутреннее вращение. В обычных условиях оси вращения каждого ядра имеют случайное направление. В магнитном поле они меняют ориентацию в соответствии с силовыми линиями этого поля. Выключение поля ведет к тому, что атомы утрачивают единое направление осей вращения и вследствие этого начинают излучать энергию. Эту энергию фиксирует датчик, а информация передается на компьютер.
Повторение циклов воздействия магнитного поля и его выключения дает достаточное количество данных для того, чтобы на компьютере было создано послойное изображение мозга. Для повышения разрешающей способности таких томографов иногда также используются контрастные вещества, содержащие
таллий и гадолиний (Black е. а., 1989). ЯМР-томограф высокого разрешения позволяет видеть клеточные структуры коры головного мозга при жизни человека (Press e. а., 1989). Наложение ПЭТ-томограмм на ЯМР-изображения дает возможность более тонко дифференцировать те или иные отделы коры и подкорковых структур (Лалаянц, Милованова, 1991).
В последнее время появилась возможность повысить разрешающую способность ЯМР-томографов с помощью использования монокло-нальных антител против специфического антигена. В этом случае ан-
Рис. 2.17. Снимки мозга, полученные с помо- ТИГен <<метят>> ВСЩССТВОМ, детектиру-
щью метода ядерно-магнитного резонанса СМЫМ томографом. Это позволяет С
(Carlson, 1992). большей точностью судить о распре-
Рис. 2.19. Варианты расположения электродов для РЭГ на кожных покровах головы. 1 — бифронтальное, 2 — бимастоидальное, 3 — окулоокципитальное, 4 — фронтоокципиталь-ное, 5 — фронтомастоидальное, 6 — окулома-стоидальное отведения (Москаленко, 1977). |
Рис. 2.21. Примеры электромиограмм. 1 и 3 “необработанная” ЭМГ; 2 и 4 — интегрированная ЭМГ (Хэссет, 1981). |
делении в специфических областях мозга рецепторов к нейромедиаторам (Pollit, 1989).
Поскольку водород содержится не в одинаковых концентрациях в разных тканях, что зависит как от структуры ткани, так и от ее метаболической активности, то при сканировании излучения этот факт используется для создания визуальной картины тканей. Получаемые с помощью указанного метода картины яснее и четче, чем изображения, представленные методом компьютерной томографии. Однако использование этого метода является более дорогим по сравнению с другими (рис. 2.17).
Реоэнцефалография
Реоэнцефалография (РЭГ) представляет собой метод исследования кровообращения головного мозга человека, основанный на регистрации изменений пассивных электрических характеристик между электродами, фиксированными на кожных покровах головы (Москаленко, 1977). Идея, положенная в основу метода, состоит в том, что электрические параметры тканей мозга различны, поэтому любые изменения удельных соотношений в закрытой черепной коробке будут отражаться на комплексном электрическом сопротивлении.
Рис. 2.18. Схема расположения тканей между электродами, наложенными на кожные покровы головы человека (а), и ее электрический эквивалент (б). 1 — кожа, 2 — мягкие ткани головы, 3 — кости черепа, 4 — пространства, заполненные ликвором, 5 — ткань мозга, 6 — электроды: R и Скк — активное и емкостное сопротивления рогового слоя кожи, RKC и Со — то же для костей, R^— сопротивление мягких тканей, окружающих череп, RK — поверхностное сопротивление кожи (Москаленко, 1977). |
Наиболее распространенная модификация этого метода основана на анализе динамики амплитуды и формы пульсовых колебаний электрического сопротивления при различных состояниях системы внутричерепного кровообращения (рис. 2.18). Приборы для регистрации РЭГ представляют собой приставку с внутренним усилителем к электроэнцефалографу или электрокардиографу.
Поскольку в РЭГ для оценки сопротивления тканей применяют токи высокой частоты, размер электродов не имеет существенного значения, так как их поляризация практически отсутствует. Используют
Рис. 2.20. Схематическое изображение изменений кривой РЭГ. Сверху вниз: норма, окклюзия сосуда, артериовенозный шунт, компрессия мозга, начальная и далеко зашедшая форма атеросклероза сосудов мозга (Москаленко, 1977).
пластинчатые овальные или круглые электроды из различных материалов, надежно фиксируя их на голове (рис. 2.19). Информативность полученных показателей зависит от конкретных задач исследования (рис. 2.20).
Электромиография
Электромиография (ЭМГ) — метод регистрации суммарных колебаний электрической активности, возникающей при сокращении мышц (рис. 2.21). Поверхностная ЭМГ суммарно отражает разряды двигательных единиц, вызывающих сокращение. Поскольку регистрация производится с поверхности кожи, разряды мышц, располагающихся на разной глубине от поверхности, ослабляются различным образом. В целом уровень
электрической активности соответствует общей величине мышечного напряжения (Хэссет, 1981).
Полученные сигналы сначала подвергаются выпрямлению, затем интегрируются: производится вычисление площади, находящейся под графической кривой ЭМГ. Электромиограмма содержит множество высокочастотных компонентов, что затрудняет процесс регистрации с помощью обычных полиграфов, поэтому для повышения точности исследования используются осциллографы.
Требования к электромиографическим электродам аналогичны тем, которые применяют в электроэнцефалографии.
Электроокулография
Рис. 2. 22. Физическая основа окулограммы. Глазное яблоко действует как миниатюрная батарея, при его повороте полюса этой батареи изменяют положение относительно электродов, помещенных около глаз. Регистрируются изменения электрического потенциала, по которому можно судить об угле поворота глаз (Хэссет, 1981). |
Электроокулография (ЭОГ) — метод регистрации электрической активности, возникающей при движении глаз. Роговица глаза имеет положительный заряд относительно сетчатки, что создает постоянный потенциал, который называется корнеоретинальным потенциалом. При изменении положения глаза происходит переориентация этого потенциала (рис. 2.22), которая фиксируется прибором.
При записи с помощью усилителя постоянного тока можно получить информацию об ориентации глаз, при использовании усилителя переменного тока — только запись движений глаз.
Рис. 2.23. Места расположения электродов для окулограммы. |
Перед записью производят калибровку, определяя диапазон возможных сдвигов. Для этого испытуемого просят смотреть вперед, вверх, вниз, в стороны. Линия на ЭОГ в тот момент, когда взгляд неподвижен и направлен вперед, принимается за нулевую. Применяются очень небольшие электроды, располагающиеся в точках, показанных на рис. 2.23. Кожу и электроды подготавливают так же, как при электроэнцефалографии.
Электроокулография наиболее
эффективна в совокупности с другими методами. При оценке ЭЭГ, например, она позволяет вычленять артефакты, обусловленные движением глаз.