И соединенных последовательно — в этом случае суммарное сопротивление
R = Ri + R2 +R3 +...Rn.
Приведенные формулы, однако, не позволяют проводить даже приближенный расчет периферического сопротивления, так как состояние сосудистого русла постоянно меняется. В то же время формула Пуазейля в целом отражает основные факторы, влияющие на величину периферического сопротивления, и дает возможность понять причину его роста при повышение вязкости крови, при увеличении длины сосудистого русла, а также при снижение радиуса сосуда. Обе основные формулы гемодинамики — Q » (Pi - Р2) : R и R = (8Lv): яг4 — в целом, позволяют понять, почему движение крови по сосудам зависит от работы сердца, от объема крови, возвращающегося к сердцу, а также от тонуса гладких мышц сосудов, который в конечном итоге определяет величину периферического сопротивления.
Для гемодинамики помимо таких понятий как объемная скорость кровотока (Q), величина кровяного давление (Р), величина периферического сопротивления (R) важно представление о площади поперечного сечения сосудистого русла (S), о линейной скорости кровотока V (она определяется по формуле Vs Q/S, где S — площадь поперечного сечения сосудистого русла), а также о характере изменений всех перечисленных показателей по ходу сосудистого русла. Принципиально важным в этом плане является два положения. 1) Объемная скорость кровотока (или минутный объем кровотока) в разных отделах сосудистого русла в данный момент времени является величиной постоянной ( если из сердца за минуту выходит 5 л крови, то такое же количество крови за этот же промежуток времени должно вернуться к сердцу). 2) Сосудистое русло, по которому совершается непрерывное движение крови, по морфологическим, биофизическим, физиологическим и другим характеристикам — неоднородно. В частности, крупные сосуды (аорта, легочная артерия) имеют самый большой диаметр (16 - 32 мм), но суммарная площадь поперечного сечения у них самая минимальная (например, у аорты — 2-3,5 см2); для них характерна высокая упругость и растяжимость, низкое сопротивление току крови, относительное невысокое содержание гладких мышц. Для мелких артерий и артериол типичен малый диаметр (1-0,2 мм), относительная большая суммарная площадь поперечного сечения, низкая упругость и растяжимость, достаточно высокое содержание гладких мышц и высокое сопротивление току
крови. У капилляров - малый диаметр (0,003 - 0,007 мм), огромная (самая большая в сосудистом русле, превышающая площадь аорты в 500- 600 раз) суммарная площадь поперечного сечения, низкая упругость и растяжимость, тончайшая стенка, в которой отсутствуют гладкомышечные клетки. Для венул, малых и больших вен характерным является достаточно большой диаметр (для венул — 0,2-2 мм, для больших вен — 5 - 10 мм), сравнительная небольшая суммарная площадь поперечного сечения, высокая растяжимость, наличие в стенках гладких мышц. Такие особенности различных отделов сосудистого русла и градиент движения крови отражаются на гемодинамичёских показателях , а также на характере движения крови по сосудам.
Выйдя из сердца в большой круг кровообращения, кровь попадает в аорту, которая за счет высокой упругости и растяжимости превращает ритмический выброс крови в равномерный кровоток. Эта часть сосудистого русла (так же, как и легочная артерия) получила название «компрессионной или эластической камеры» или «сосудов котла». Здесь величина кровяного давления достигает самых больших значений — в момент выброса крови из сердца — 125-120 мм рт ст, в момент диастолы — 85^80 мм рт ст. Здесь максимальна и линейная скорость кровотока — до 50 см/с.
В крупных артериях (плечевая, бедренная), а также в артериях среднего калибра давление крови сохраняется близким к указанным выше значениям, так как кровь проходит сравнительно короткий путь, на котором она не испытывает большого сопротивления (падение давление не превышает 10%), линейная скорость кровотока, однако уже заметно снижается (так как растет площадь поперечного сечения) и составляет 13 см/с. Эту часть сосудистого русла иногда называют «сосудами распределения».
Проходя по малым артериям и артериолам, кровь, в следствие малого диаметра этих сосудов и низкой растяжимости, испытывает большое сопротивление — поэтому на этом участке сосудистого русла происходит выраженное падение величины артериального давления — до 80—90 мм. рт. ст. в малых артериях и до 40—60 мм. рт. ст. — в артериолах. Эта часть сосудистого русла получила название «резистивные сосуды» или «сосуды сопротивления», так как именно здесь кровь испытывает наибольшее сопротивление своему току. Линейная скорость кровотока на этом участке составляет 0,3 - 6 см/с.
Пройдя через прекапиллярные сосуды — сфинктеры, которые в функциональном плане также можно называть «сосудами сопротивления» и состояние которых может привести к полному дальнейшему прекращению кровотока в данном регионе, или наоборот, к высокому уровню кровотока (И.М. Сеченов их называл «кранами сердечно-сосудистой системы»), кровь попадаете капилляры—очень короткие (до 1 мм) и очень тонкие (до 0,003—0,007 мм) сосуды. В большом круге кровообращения на артериальном конце капилляров давление достигает 30—35 мм. рт. ст., а на венозном (в силу сопротивления) ■— 10—-17 мм. рт. ст. Этого давления еще достаточно для перехода крови из капилляров в венозную систему. За счет огромной суммарной площади поперечного сечения в капиллярах линейная скорость достигает минимальных значений — 0,5—1 мм/с. Благодаря этому капилляры выполняют основную задачу всего процесса кровообращения—обмен газов и различных веществ между кровью и клетками. Поэтому эта часть сосудистого русла получила название —« нутритив-ные сосуды» («обменные сосуды» или «питающие сосуды»).
В ряде случаев кровь минует капилляры, т, е. проходит сразу же в венозное русло. Этот «сброс» крови осуществляется по артерио-венозным анастомозам; такие сосуды получили название «шунтирующие сосуды».
Венозное русло предназначено для сбора крови, т. е. оио выполняет коллекторную функцию. Часто венозные сосуды называют «емкостными сосудами» или «аккумулирующими сосудами» — их высокая растяжимость позволяет накапливать здесь большой (75—80%) объем крови. При повышении давления в венозной системе на несколько миллиметров объем крови в венах увеличивается в 2—3 раза, а при повышении давления в венах на 10 мм рт. ст. вместимость венозной системы возрастет в 6 раз. В венозном русле кровь испытывает меньшее сопротивление, чем в мелких артериях и артериолах, однако достаточно большая
протяженность венозного русла приводит к тому, что давление крови по мере ее приближения к сердцу—постепенно снижается до нуля. Так, в венулах оно составляет 12— 18 мм рт. ст., в венах среднего калибра — 5—8 мм рт. ст., а в полых венах — 1—3 мм рт. ст. В то же время линейная скорость кровотока по мере приближения крови к сердцу — возрастает и составляет соответственно 0,07 см/с, 1,5 см/с и 33 см/с. Низкое гидростатическое давление в венозном русле, с одной стороны, способствует движению крови по артериальному руслу, но с другой стороны — затрудняет возврат крови к сердцу. Однако для этих целей в эволюции возник ряд компенсаторных механизмов. В частности, венозному возврату крови способствуют: 1) наличие в венах многочисленных полулунных клапанов эндотелиального происхождения (исключение - полые вены, вены воротной системы и мелкие венулы), пропускающих кровь только по направлению к сердцу; 2) снижение внутриплеврального давления в момент вдоха (присасывающее действие грудной клетки); 3) присасывающее действие полостей сердца ( во время систолы желудочков атриовентрикулярная перегородка смещается в сторону желудочка, что создает дополнительное разряжение в предсердиях и увеличивает градиент давления); 4) сифонное явление (устье аорты выше устья полых вен); 5) динамическая работа мышц ног, рук, туловища (повышение вневенозного давления во время сокращения скелетных мышц приводит к выталкиванию венозной крови по направлению к сердцу); такая функциональная роль скелетных мышц послужила поводом для того, чтобы их стали называть «периферическим сердцем» или «мышечным насосом», а двигательная активность рассматривается как важнейший фактор, способствующий работе системы кровообращения. Массаж также способствует венозному возврату крови.
В целом можно заключить, что 10% энергии, затрачиваемой левым желудочком на изгнание крови в большой круг кровообращения, расходуется на продвижение крови в крупных и средних артериях, 85% — на продвижение крови в артериолах и капиллярах и остальные 5% — на продвижение по венозном сосудам.