Микроциркуляция и реологические свойства крови
В настоящее время проблема микроциркуляции привлекает большое внимание теоретиков и клиницистов. К сожалению, накопленные знания в этой области не получили пока должного применения в практической деятельности врача из-за отсутствия надежных и доступных методов диагностики. Однако без понимания основных закономерностей тканевой циркуляции и метаболизма невозможно правильно использовать современные средства инфузионной терапии.
Система микроциркуляции играет исключительно важную роль в обеспечении тканей кровью. Это происходит в основном за счет реакции вазомоции, которая осуществляется вазодилататорами и вазоконстрикторами в ответ на изменение метаболизма тканей. Капиллярная сеть составляет 90% кровеносной системы, но 60—80% ее остается в недеятельном состоянии.
Микроциркуляционная система образует замкнутый кровоток между артериями и венами (рис. 3). Она состоит из артерпол (диаметр 30—40 мкм), которые заканчиваются терминальными артериолами (20—30 мкм), разделяющимися на множество метартериол и прекапилляров (20—30 мкм). Далее под углом, близким к 90°, расходятся ригидные трубки, лишенные мышечной оболочки, т.е. истинные капилляры (2—10 мкм).
Рис. 3. Упрощенная схема аспределения сосудов всистеме микроциркуляцин 1 — артерия; 2 — термиальная артерия; 3 — артеррола; 4 — терминальная артериола; 5 — метартерила; 6 — прекапилляр с мышечным жомом (сфинктером); 7 - капилляр; 8 - собирательная венула; 9 - венула; 10 — вена; 11 - основной канал (центральный ствол); 12 - артериоло-венулярныи шунт.
Метартериолы на уровне прекапилляров имеют мышечные жомы, регулирующие поступление крови в капиллярное русло и в то же время создающие необходимое для работы сердца периферическое сопротивление. Прекапилляры являются основным регулирующим звеном микроциркуляции, обеспечивающим нормальную функцию макроциркуляции и транскапиллярного обмена. Роль прекапилляров как регуляторов микроциркуляции особенно важна при различных нарушениях волемии, когда от состояния транскапиллярного обмена зависит уровень ОЦК.
Продолжение метартериол образует основной канал (центральный ствол), который переходит в венозную систему. Сюда же вливаются собирательные вены, отходящие от венозного отдела капилляров. Они образуют превенулы, имеющие мышечные элементы и способные перекрывать ток крови из капилляров. Превенулы собираются в венулы и образуют вену.
Между артериолами и венулами существует мостик — артериоло-венозный шунт, который активно участвует в регуляции кровотока через микрососуды.
Структура кровотока. Кровоток в системе микроциркуляции имеет определенную структуру, которая определяется прежде всего скоростью движения крови. В центре кровотока, создавая осевую линию, располагаются эритроциты, которые вместе с плазмой движутся один за другим с определенным интервалом. Этот поток эритроцитов создает ось, вокруг которой располагаются другие клетки — лейкоциты и тромбоциты. Эритроцитарный ток имеет наибольшую скорость продвижения. Тромбоциты и лейкоциты, расположенные вдоль стенки сосуда, движутся медленнее. Расположение составных частей крови довольно определенное и при нормальной скорости кровотока не меняется.
Непосредственно в истинных капиллярах ток крови иной, так как диаметр капилляров (2—10 мкм) меньше диаметра эритроцитов (7—8 мкм). В этих сосудах весь просвет занимают в основном эритроциты, которые приобретают вытянутую конфигурацию в соответствии с просветом капилляра. Пристеночный слой плазмы сохранен. Он необходим как смазка для скольжения эритроцита. Плазма сохраняет также электрический потенциал мембраны эритроцита и ее биохимические свойства, от которых зависит эластичность самой мембраны. В капилляре ток крови имеет ламинарный характер, его скорость весьма низкая — 0,01—0,04 см/с при артериальном давлении 2—4 кПа (15—30 мм рт. ст.) [L. Е. Gelin, 1963].
Реологические свойства крови. Реология — наука о текучести жидких сред. Она изучает в основном ламинарные потоки, которые зависят от взаимосвязи сил инерции и вязкости.
Вода имеет наименьшую вязкость, позволяющую ей течь в любых условиях, независимо от скорости потока и температурного фактора. Неньютоновские жидкости, к которым относится кровь, этим законам не подчиняются. Вязкость воды — величина постоянная. Вязкость крови зависит от ряда физико-химических показателей и варьирует в широких пределах.
В зависимости от диаметра сосуда меняются вязкость и текучесть крови. Число Рейнольдса отражает обратную связь между вязкостью среды и ее текучестью с учетом линейных сил инерции и диаметра сосуда. Микрососуды диаметром не более 30—35 мкм оказывают положительное влияние на вязкость протекающей в них крови и текучесть ее по мере проникновения в более узкие капилляры повышается. Это особенно выражено в капиллярах, имеющих в поперечнике 7—8 мкм. Однако в более мелких капиллярах вязкость возрастает.
Кровь находится в постоянном движении. Это ее основная характеристика, ее функция. По мере увеличения скорости кровотока вязкость крови снижается и, наоборот, при замедлении кровотока увеличивается. Однако имеется и обратная зависимость: скорость кровотока обусловливается вязкостью. Для понимания этого чисто реологического эффекта следует рассмотреть показатель вязкости крови, который представляет собой отношение сдвигающего напряжения к скорости сдвига.
Ток крови состоит из слоев жидкости, которые движутся в нем параллельно, и каждый из них находится под воздействием силы, определяющей сдвиг («сдвигающее напряжение») одного слоя в отношении другого. Эту силу создает систолическое артериальное давление.
На вязкость крови определенное влияние оказывает концентрация содержащихся в ней ингредиентов — эритроцитов, ядерных клеток, белков жирных кислот и т.д.
Эритроциты имеют внутреннюю вязкость, которая определяется вязкостью содержащегося в них гемоглобина. Внутренняя вязкость эритроцита может меняться в больших пределах, от чего зависит его способность проникать в более узкие капилляры и принимать вытянутую форму (тикситропия). В основном эти свойства эритроцита обусловливаются содержанием в нем фосфорных фракций, в частности АТФ. Гемолиз эритроцитов с выходом гемоглобина в плазму повышает вязкость последней в 3 раза.
Для характеристики вязкости крови белки имеют исключительно важное значение. Выявлена прямая зависимость вязкости крови от концентрации белков крови, особенно а1-, а2-, бета- и гамма-глобулинов, а также фибриногена. Реологически активную роль играет альбумин.
В число других факторов, активно влияющих на вязкость крови, входят жирные кислоты, углекислота. В норме вязкость крови составляет в среднем 4—5 сП (сантипуаз).
Вязкость крови, как правило, повышена при шоке (травматический, геморрагический, ожоговый, токсический, кардиогенный и т.д.), обезвоживании организма, эритроцитемии и ряде других заболеваний. При всех этих состояниях в первую очередь страдает микроциркуляция.
Для определения вязкости существуют вискозиметры капиллярного типа (конструкции Освальда). Однако они не отвечают требованию определения вязкости движущейся крови. В связи с этим в настоящее время конструируются и используются вискозиметры, представляющие собой два цилиндра разного диаметра, вращающиеся на одной оси; в просвете между ними циркулирует кровь. Вязкость такой крови должна отражать вязкость крови, циркулирующей в сосудах организма больного.
Наиболее тяжелое нарушение структуры капиллярного кровотока, текучести и вязкости крови происходит вследствие агрегации эритроцитов, т.е. склеивания красных клеток между собой с образованием «монетных столбиков» [Чижевский А.Л., 1959]. Этот процесс не сопровождается гемолизом эритроцитов, как при агглютинации иммунобиологической природы.
Механизм агрегации эритроцитов может быть связан с плазменными, эритроцитными или гемодинамическими факторами.
Из числа плазменных факторов основную роль играют белки, особенно с высокой молекулярной массой, нарушающие коэффициент соотношения альбумина и глобулинов. Высокой агрегационной способностью обладают а1-, а2- и бета-глобулиновые фракции, а также фибриноген.
К нарушениям свойств эритроцитов относится изменение их объема, внутренней вязкости с потерей эластичности мембраны и способности проникать в капиллярное русло и т.д.
Замедление скорости кровотока часто связано со снижением скорости сдвига, т.е. имеет место в тех случаях, когда падает артериальное давление. Агрегация эритроцитов наблюдается, как правило, при всех видах шока и интоксикации, а также при массивных гемотрансфузиях и неадекватном искусственном кровообращении [Рудаев Я.А. и др., 1972; Соловьев Г.М. и др., 1973; Gelin L. Е.,1963, и др.].
Генерализованная агрегация эритроцитов проявляется феноменом «сладжа». Название этому феномену предложил М.Н. Knisely, «sludging», по-английски «топь», «грязь». Агрегаты эритроцитов подвергаются резорбции в ретикуло-эндотелиальной системе. Этот феномен всегда обусловливает тяжелый прогноз. Необходимо скорейшее применение дезагрегационной терапии с помощью низкомолекулярных растворов декстрана или альбумина.
Развитие «сладжа» у больных может сопровождаться весьма обманчивым порозовением (или покраснением) кожи за счет скопления секвестрированных эритроцитов в нефункционирующих подкожных капиллярах. Эта клиническая картина «сладжа», т.е. последней степени развития агрегации эритроцитов и нарушения капиллярного кровотока, описана L.Е. Gelin в 1963 г. под названием «красный шок» («red shock»). Состояние больного при этом крайне тяжелое и даже безнадежное, если не приняты достаточно интенсивные меры.