Структура энергетических затрат организма

Энергозатраты  
Базальный метаболизм   Функция Рост и развитие (адаптация)      
Внешняя работа+  
Футиль- ные циклы Минимальный уровень функций Репаративные процессы   Гомеостаз (постоянство внутренней среды) Гомеоморфоз (постоянство формы) Гомеорез (постоянство развивающихся систем) Синтезы (анаболизм) Деструкция устаревших структур (катаболизм) Активация генома  
   
   
   
                   

Репаративные процессы. Многочисленные сложно организованные молекулы, участвующие в метаболических процессах, рано или поздно начинают повреждаться, теряя свои функциональные свойства или даже приобретая токсические. Необходимы непрерывные «ремонтно-восстановительные работы», убирающие из клетки поврежденные молекулы и синтезирующие на их месте новые, идентичные прежним. Такие репаративные процессы происходят постоянно в каждой клетке, так как время жизни любой белковой молекулы обычно не превышает 1—2 нед., а их в любой клетке сотни миллионов. Факторы внешней среды — неблагоприятная температура, повышенный радиационный фон, воздействия токсических веществ и многое другое — способны существенно укоротить жизнь сложных молекул и, как следствие, повысить напряжение репаративных процессов.

Минимальный уровень функционирования тканей многоклеточного организма. Функционирование клетки — это всегда некая внешняя работа. Для мышечной клетки это ее сокращение, для нервной клетки — выработка и проведение электрического импульса, для железистой клетки — выработка секрета и акт секретирования, для эпителиальной клетки — пиноцитоз или другая форма взаимодействия с окружающими ее тканями и биологическими жидкостями. Естественно, что любая работа не может осуществляться без затрат энергии на ее реализацию. Но любая работа, кроме того, приводит к изменению внутренней среды организма, так как продукты жизнедеятельности активной клетки могут быть небезразличны для других клеток и тканей. Поэтому второй эшелон энергозатрат при выполнении функции связан с активным поддержанием гомеостаза, на что порой расходуется весьма значительная часть энергии. Между тем не только состав внутренней среды меняется по ходу выполнения функциональных задач, нередко меняются и структуры, причем часто в сторону разрушения. Так, при сокращении скелетных мышц (даже небольшой интенсивности) всегда происходят разрывы мышечных волокон, т.е. нарушается целостность формы. Организм располагает специальными механизмами поддержания постоянства формы (гомеоморфоз), обеспечивающими скорейшее восстановление поврежденных или измененных структур, но на это опять же расходуется энергия. И, наконец, для развивающегося организма очень важно сохранить главные тенденции своего развития, независимо от того, какие функции приходится активировать в результате воздействия конкретных условий. Поддержание неизменности направления и каналов развития (гомеорез) — еще одна форма энергозатрат при активации функций.

Для развивающегося организма важной статьей энергозатрат является собственно рост и развитие. Впрочем, для любого, в том числе зрелого организма, не- менее энергоемкими по объему и весьма близкими по существу являются процессы адаптивных перестроек. Здесь расходы энергии направлены на активацию генома, деструкцию устаревших структур (катаболизм) и синтезы (анаболизм).

Затраты на базальный метаболизм и затраты на рост и развитие с возрастом существенно снижаются, а затраты на осуществление функций становятся качественно иными. Поскольку методически крайне трудно разделить базальные энергозатраты и расход энергии на процессы роста и развития, их обычно рассматривают совместно под названием «основной обмен».

Возрастная динамика основного обмена. Со времен М.Рубнера (1861) хорошо известно, что у млекопитающих по мере возрастания массы тела интенсивность теплопродукции в расчете на единицу массы снижается; тогда как величина обмена, рассчитанная на единицу поверхности, остается постоянной («правило поверхности»). Удовлетворительного теоретического объяснения эти факты до сих пор не имеют, и поэтому для выражения связи между размерами тела и интенсивностью метаболизма пользуются эмпирическими формулами. Для млекопитающих, включая и человека, в настоящее время чаще всего пользуются формулой М. Клайбера:

М= 67,7·Р 0·75 ккал/сут,

где М — теплопродукция целого организма, а Р — масса тела.

Однако возрастные изменения основного обмена не всегда могут быть описаны с помощью этого уравнения. В течение первого года жизни теплопродукция не снижается, как это требовалось бы по уравнению Клайбера, а остается на одном уровне или даже несколько повышается. Лишь в годовалом возрасте достигается примерно та интенсивность обмена (55 ккал/кг·сут), которая «полагается» по уравнению Клайбера для организма массой 10 кг. Только с 3-летнего возраста интенсивность основного обмена начинает постепенно снижаться, а достигает уровня взрослого человека — 25 ккал/кг · сут — лишь к периоду половой зрелости.

Энергетическая стоимость процессов роста и развития. Нередко повышенную интенсивность основного обмена у детей связывают с затратами на рост. Однако точные измерения и расчеты, проведенные в последние годы, показали, что даже самые интенсивные ростовые процессы в первые 3 месяца жизни не требуют более 7—8 % от суточного потребления энергии, а после 12 месяцев они не превышают 1 %. Больше того, наивысший уровень энергозатрат организма ребенка отмечен в возрасте 1 года, когда скорость его роста становится в 10 раз ниже, чем в полугодовалом возрасте. Значительно более «энергоемкими» оказались те этапы онтогенеза, когда скорость роста снижается, а в органах и тканях происходят существенные качественные изменения, обусловленные процессами клеточных дифференцировок. Специальные исследования биохимиков показали, что в тканях, которые вступают в этап дифференцировочных процессов (например, в мозге), резко увеличивается содержание митохондрий, а следовательно, усиливается окислительный обмен и теплопродукция. Биологический смысл этого явления состоит в том, что в процессе клеточной дифференцировки образуются новые структуры, новые белки и другие крупные молекулы, которых раньше клетка производить не умела. Как и любое новое дело, это требует особых энергетических затрат, тогда как ростовые процессы — это налаженное «серийное производство» белковых и иных макромолекул в клетке.

В процессе дальнейшего индивидуального развития наблюдается снижение интенсивности основного обмена. При этом оказалось, что вклад различных органов в основной обмен с возрастом изменяется. Например, головной мозг (вносящий значительный вклад в основной обмен) у новорожденных составляет 12 % от массы тела, а у взрослого — только 2 %. Так же неравномерно растут и внутренние органы, которые, как и мозг, имеют даже в покое очень высокий уровень энергетического обмена — 300 ккал/кг • сут. В то же время мышечная ткань, относительное количество которой за время постнатального развития почти удваивается, характеризуется очень низким уровнем обмена в покое — 18 ккал/кг • сут. У взрослого на долю мозга приходится примерно 24 % основного обмена, на долю печени — 20%, на долю сердца — 10 % и на скелетные мышцы — 28 %. У годовалого ребенка на долю мозга приходится 53 % основного обмена, вклад печени составляет около 18 %, а на долю скелетных мышц приходится только 8 %.

Обмен покоя у детей школьного возраста. Измерить основной обмен можно только в клинике: для этого требуются особые условия. А вот обмен покоя можно измерить у каждого человека: достаточно, чтобы он был в состоянии натощак и несколько десятков минут находился в мышечном покое. Обмен покоя немного выше, чем основной обмен, но эта разница не принципиальна. Динамика возрастных изменений обмена покоя не сводится к простому понижению интенсивности метаболизма. Периоды, характеризующиеся быстрым снижением интенсивности обмена, сменяются возрастными интервалами, в которых обмен покоя стабилизируется.

При этом обнаруживается тесная связь между характером изменения интенсивности метаболизма и скоростью роста (см. рис. 8 на с. 57). Столбиками на рисунке показаны относительные годовые приросты массы тела. Оказывается, чем больше относительная скорость роста, тем значительнее в этот период снижение интенсивности обмена покоя.

На представленном рисунке видна еще одна особенность — отчетливые половые различия: девочки в исследованном возрастном интервале примерно на год опережают мальчиков по изменению темпов роста и интенсивности обмена. При этом обнаруживается тесная связь между интенсивностью обмена покоя и темпами роста детей в период полуростового скачка — от 4 до 7 лет. В этот же период начинается смена молочных зубов на постоянные, что также может служить одним из показателей морфофункционального созревания.

В процессе дальнейшего развития снижение интенсивности основного обмена продолжается, причем теперь уже в тесной связи с процессами полового созревания. На начальных стадиях полового созревания интенсивность метаболизма у подростков примерно на 30 % выше, чем у взрослых. Резкое снижение показателя начинается на III стадии, когда активируются гонады, и продолжается вплоть до наступления половой зрелости. Как известно, пубертатный скачок роста также совпадает с достижением III стадии полового созревания, т.е. и в этом случае сохраняется закономерность снижения интенсивности метаболизма в периоды наиболее интенсивного роста.

Мальчики в своем развитии в этот период отстают от девочек примерно на 1 год. В строгом соответствии с этим фактом интенсивность обменных процессов у мальчиков всегда выше, чем у девочек того же календарного возраста. Различия эти невелики (5—10 %), но стабильны на протяжении всего периода полового созревания.

Терморегуляция

Терморегуляция, т. е. поддержание постоянной температуры ядра тела, определяется двумя основными процессами: продукцией тепла и теплоотдачей. Продукция тепла (термогенез) зависит, в первую очередь, от интенсивности обменных процессов, тогда как теплоотдача определяется теплоизоляцией и целым комплексом довольно сложно организованных физиологических механизмов, включающих сосудодвигательные реакции, активность внешнего дыхания и потоотделения. В связи с этим термогенез относят к механизмам химической терморегуляции, а способы изменения теплоотдачи — к механизмам физической терморегуляции. С возрастом меняются как те, так и другие механизмы, а также их значимость в поддержании стабильной температуры тела.

Возрастное развитие механизмов терморегуляции. Чисто физические законы приводят к тому, что по мере увеличения массы и абсолютных размеров тела вклад химической терморегуляции снижается. Так, у новорожденных детей величина терморегуляторной теплопродукции составляет примерно 0,5 ккал/кг • ч • град, а у взрослого человека — 0,15 ккал/кг • ч • град.

Новорожденный ребенок при понижении температуры среды может увеличить теплопродукцию почти до тех же величин, что и взрослый человек, — до 4 ккал/кг • ч. Однако ввиду малой теплоизоляции (0,15 град • м2 • ч/ккал) диапазон химической терморегуляции у новорожденного ребенка очень небольшой — не более 5°. При этом следует учесть, что критическая температура (Th), при которой включается термогенез, составляет для доношенного ребенка +33 °С, ко взрослому состоянию она снижается до +27...+23 °С. Однако в одежде, теплоизоляция которой обычно составляет 2,5 КЛО, или 0,45 град-м2·ч/ккал, величина критической температуры снижается до +20 °С, поэтому ребенок в обычной для него одежде при комнатной температуре находится в термонейтральной среде, т.е. в условиях, не требующих дополнительных затрат на поддержание температуры тела.

Только при процедуре переодевания для предотвращения охлаждения ребенок первых месяцев жизни должен включать достаточно мощные механизмы теплопродукции. Причем у детей этого возраста имеются особые, специфические, отсутствующие у взрослых механизмы термогенеза. Взрослый человек в ответ на охлаждение начинает дрожать, включая так называемый «сократительный» термогенез, т. е. дополнительную теплопродукцию в скелетных мышцах (холодовая дрожь). Особенности конструкции тела ребенка делают такой механизм теплопродукции неэффективным, поэтому у детей активируется так называемый «несократительный» термогенез, локализованный не в скелетных мышцах, а совсем в других органах.

Это внутренние органы (прежде всего, печень) и специальная бурая жировая ткань, насыщенная митохондриями (от того и ее бурый цвет) и обладающая высокими энергетическими возможностями. Активацию теплопродукции бурого жира у здорового ребенка можно заметить по повышению кожной температуры в тех частях тела, где бурый жир расположен более поверхностно, — межлопаточная область и шея. По изменению температуры в этих областях можно судить о состоянии механизмов терморегуляции ребенка, о степени его закаленности. Так называемый «горячий затылок» ребенка первых месяцев жизни связан именно с активностью бурого жира.

В течение первого года жизни активность химической терморегуляции снижается. У ребенка 5—6 мес роль физической терморегуляции заметно возрастает. С возрастом основная масса бурого жира исчезает, но еще до 3-летнего возраста сохраняется реакция самой крупной части бурого жира — межлопаточной. Имеются сообщения, что у взрослых людей, работающих на Севере, на открытом воздухе, бурая жировая ткань продолжает активно функционировать. В обычных условиях у ребенка старше 3 лет активность несократительного термогенеза ограничена, а главенствующую роль в повышении теплопродукции при активации химической терморегуляции начинает играть специфическая сократительная активность скелетных мышц — мышечный тонус и мышечная дрожь. Если такой ребенок оказывается в условиях обычной комнатной температуры (+20 °С) в трусах и майке, у него в 80 случаях из 100 активируется теплопродукция.

Усиление ростовых процессов в период полуростового скачка (5—6 лет) приводит к увеличению длины и площади поверхности конечностей, что обеспечивает регулируемый теплообмен организма с окружающей средой. Это в свою очередь приводит к тому, что начиная с 5,5—6 лет (особенно отчетливо у девочек) происходят значительные изменения терморегуляторной функции. Теплоизоляция тела возрастает, а активность химической терморегуляции существенно снижается. Такой способ регуляции температуры тела более экономичен, и именно он в ходе дальнейшего возрастного развития становится преобладающим. Этот период развития терморегуляции является сенситивным для проведения закаливающих процедур.

С началом полового созревания наступает следующий этап развития терморегуляции, проявляющийся в расстройстве складывавшейся функциональной системы. У 11—12-летних девочек и 13-летних мальчиков, несмотря на продолжающееся снижение интенсивности обмена покоя, соответствующей подстройки сосудистой регуляции не происходит. Лишь в юношеском возрасте после завершения полового созревания возможности терморегуляции достигают дефинитивного уровня развития. Повышение теплоизоляции тканей собственного тела позволяет обходиться без включения химической терморегуляции (т. е. добавочной теплопродукции) даже при снижении температуры среды на 10—15 °С. Такая реакция организма, естественно, более экономична и эффективна.

Питание

Все необходимые организму человека вещества, которые используются для производства энергии и строительства собственного тела, поступают из окружающей среды. По мере взросления ребенок к концу первого года жизни все в большей мере переходит на самостоятельное питание, а после 3 лет питание ребенка мало чем отличается от питания взрослого.

Структурные компоненты пищевых веществ. Пища человека бывает растительного и животного происхождения, но независимо от этого она состоит из одних и тех же классов органических соединений — белков, жиров и углеводов. Собственно, эти же классы соединений составляют в основном и тело самого человека. В то же время различия между животной и растительной пищей есть, и довольно важные.

Углеводы. Наиболее массовый компонент растительной пищи — это углеводы (чаще всего в виде крахмала), составляющие основу энергетического обеспечения человеческого организма. Для взрослого человека требуется получать углеводы, жиры и белки в соотношении 4:1:1. Поскольку у детей обменные процессы идут интенсивнее, причем главным образом — за счет метаболической активности мозга, который питается почти исключительно углеводами, дети должны получать больше углеводной пищи — в соотношении 5:1:1. В первые месяцы жизни ребенок не получает растительной пищи, зато в женском молоке относительно очень много углеводов: оно примерно такое же жирное, как коровье, содержит в 2 раза меньше белков, но зато в 2 раза больше углеводов. Соотношение углеводов, жиров и белков в женском молоке составляет примерно 5:2:1. Искусственные смеси для вскармливания детей первых месяцев жизни приготавливаются на основе Разбавленного примерно вдвое коровьего молока с добавлением Фруктозы, глюкозы и других углеводов.

Жиры. Растительная пища редко бывает богата жирами, однако содержащиеся в растительных жирах компоненты крайне необходимы для организма человека. В отличие от животных жиров, растительные содержат много так называемых полиненасыщенных жирных кислот. Это длинноцепочечные жирные кислоты, в структуре которых имеются двойные химические связи. Такие молекулы используются клетками человека для строительства клеточных мембран, в которых они выполняют стабилизирующую роль, защищая клетки от вторжения агрессивных молекул и свободных радикалов. Благодаря этому свойству растительные жиры обладают противораковой, антиоксидантной и противорадикальной активностью. Кроме того, в растительных жирах обычно растворено большое количество ценных витаминов группы А и Е. Еще одно достоинство растительных жиров — отсутствие в них холестерина, который способен откладываться в кровеносных сосудах человека и вызывать их склеротические изменения. Животные жиры, напротив, содержат значительное количество холестерина, но практически не несут в себе витаминов и полиненасыщенных жирных кислот. Тем не менее животные жиры также необходимы организму человека, поскольку они составляют важный компонент энергетического обеспечения, а кроме того, содержат липокинины, которые помогают организму усваивать и перерабатывать свой собственный жир.

Белки. Растительные и животные белки также существенно различаются по своему составу. Хотя все белки состоят из аминокислот, некоторые из этих важнейших «кирпичиков» могут синтезироваться клетками человеческого организма, а другие не могут. Этих последних немного, всего 4—5 видов, но их ничем нельзя заменить, поэтому они называются незаменимыми аминокислотами. Растительная пища почти не содержит незаменимых аминокислот — только бобовые и соевые культуры имеют в своем составе небольшое их количество. Между тем в мясе, рыбе и других продуктах животного происхождения эти вещества представлены широко. Нехватка некоторых незаменимых аминокислот резко отрицательно сказывается на динамике ростовых процессов и на развитии многих функций, причем наиболее существенно на развитии мозга и интеллекта ребенка. По этой причине дети, длительно страдающие от недоедания в раннем возрасте, нередко остаются на всю жизнь умственно неполноценными. Вот почему детей ни в коем случае нельзя ограничивать в употреблении животной пиши: как минимум, молока и яиц, а также рыбы. По-видимому, с этим же обстоятельством связано то, что дети до 7 лет, согласно христианским традициям, не должны соблюдать пост, т. е. отказываться от животной пищи.

Макро- и микроэлементы. В пищевых продуктах содержатся почти все известные науке химические элементы, за исключением, быть может, радиоактивных и тяжелых металлов, а также инертных газов. Некоторые элементы, такие, как углерод, водород, азот, кислород, фосфор, кальций, калий, натрий и некоторые другие, входят в состав всех пищевых продуктов и поступают в организм в очень большом количестве (десятки и сотни граммов в сутки). Такие вещества принято относить к макроэлементам. Другие содержатся в пище в микроскопических дозах, поэтому их называют микроэлементами. Это йод, фтор, медь, кобальт, серебро и многие другие элементы. К микроэлементам нередко относят железо, хотя его количество в организме довольно велико, так как железо играет ключевую роль в переносе кислорода внутри организма. Недостаток любого из микроэлементов может стать причиной серьезного заболевания. Нехватка йода, например, ведет к развитию тяжелого заболевания щитовидной железы (так называемый зоб). Нехватка железа приводит к железодефицитной анемии — форме малокровия, которая отрицательно сказывается на работоспособности, темпах роста и развития ребенка. Во всех подобных случаях необходима коррекция питания, включение в рацион продуктов, содержащих недостающие элементы. Так, йод содержится в большом количестве в морской капусте — ламинарии, кроме того, в магазинах продается йодированная поваренная соль. Железо содержится в говяжьей печени, яблоках и некоторых других фруктах, а также в детских ирисках «Гематоген», продающихся в аптеках.

Витамины, авитаминоз, болезни обмена веществ. Витамины — это средние по размеру и сложности органические молекулы, которые обычно не вырабатываются клетками организма человека. Мы вынуждены получать витамины с пищей, так как они необходимы для работы многих ферментов, регулирующих биохимические процессы в организме. Витамины — очень нестойкие вещества, поэтому приготовление пищи на огне почти полностью уничтожает содержавшиеся там витамины. Только сырые продукты содержат витамины в заметном количестве, поэтому главным источником витаминов для нас являются овощи и фрукты. Хищные звери, а также коренные жители Севера, питающиеся почти исключительно мясом и рыбой, получают достаточное количество витаминов из сырых продуктов животного происхождения. В жареном и вареном мясе и рыбе витаминов практически нет.

Нехватка витаминов проявляется в различных болезнях обмена веществ, которые объединяются под названием авитаминозы. Витаминов сейчас открыто уже около 50, и каждый из них отвечает за свой «участок» обменных процессов, соответственно и болезней, вызванных авитаминозом, насчитывается несколько десятков. Цинга, бери-бери, пеллагра и другие болезни этого рода широко известны.

Витамины делятся на две большие группы: жирорастворимые и водорастворимые. Водорастворимые витамины в большом количестве содержатся в овощах и фруктах, а жирорастворимые — чаще в семенах и орехах. Оливковое, подсолнечное, кукурузное и другие растительные масла — важные источники многих жирорастворимых витаминов. Однако витамин D (противорахитный) содержится преимущественно в рыбьем жире, который добывают из печени трески и некоторых других морских рыб.

В средних и северных широтах к весне в сохранившейся с осени растительной пище количество витаминов резко убывает, и многие люди — жители северных стран — испытывают авитаминоз. Преодолевать это состояние помогают соленые и квашеные продукты (капуста, огурцы и некоторые другие), в которых высоко содержание многих витаминов. Кроме того, витамины вырабатываются микрофлорой кишечника, поэтому при нормальном пищеварении человек снабжается многими важнейшими витаминами группы В в достаточном количестве. У детей первого года жизни микрофлора кишечника еще не сформирована, поэтому они должны получать в качестве источников витаминов достаточное количество материнского молока, а также фруктовых и овощных соков.

Суточная потребность в энергии, белках, витаминах. Количество съедаемой за день пищи напрямую зависит от скорости обменных процессов, поскольку пища должна полностью компенсировать потраченную на все функции энергию (рис. 13). Хотя интенсивность обменных процессов с возрастом у детей старше 1 года снижается, увеличение массы их тела приводит к нарастанию суммарных (валовых) энергозатрат. Соответственно увеличивается и потребность в основных питательных веществах. Ниже приведены справочные таблицы (табл. 3—6), показывающие примерные цифры нормального суточного потребления питательных веществ, витаминов и важнейших минеральных веществ детьми. Следует подчеркнуть, что в таблицах дана масса чистых веществ без учета входящей в любую пишу воды, а также органических веществ, не относящихся к белкам, жирам и углеводам (например, целлюлозы, составляющей основную массу овощей).

Таблица 3

Потребность в белках, жирах и углеводах детей и подростков (в г/сут)

Возраст, годы Белки Жиры Углеводы
    Всего Животные Всего Животные    
0,5-1 20-25
1-1,5
1,5-2
3-4 - 63
5-6
7-10
11-13
14-17 мальчики  
14-17 девочки          

Примечание. Сюда не включены белки, жиры и углеводы, получаемые детьми из материнского молока.

Таблица 4

Потребность детей и подростков в витаминах (в мг/сут)

Возраст, годы А В1 В2 РР В6 С
0,5-1 0,5 0,5 0,6 6,0 0,5 20,0
1 — 1,5 1,0 0,8 1,1 9,0 0,9 35,0
1,5-2 1,0 0,9 1,2 10,0 1,0 40,0
3-4 1,0 1,1 1,4 12,0 1,3 45,0
5-6 1,0 1,2 1,6 13,0 1,4 50,0
7-10 1,5 1,4 1,9 15,0 1,7 50,0
11-13 1,5 1,7 2,3 19,0 2,0 60,0
14-17 1,5 1,9 2,5 21,0 2,2 80,0
мальчики            
14-17 1,5 1,7 2,2 18,0 1,9 70,0
девочки            

Структура энергетических затрат организма - student2.ru

Рис. 13. Структура суточных энергозатрат взрослого и ребенка (от знака ۷ по часовой стрелке)

Таблица 5

Потребность детей и подростков в некоторых минеральных веществах

(в мг/сут)

Возраст, годы Кальций Фосфор Магний Железо
До 1 года
1—3
4-6
7-10
11-13
14-17

Таблица 6

Потребность в витаминах, их роль и последствия недостаточного потребления (по В.Б.Спиричеву, 2000)

Витамин (в сутки) Рекомендуемые суточные нормы потребления Роль в организме Последствия и проявления недостаточного потребления
    Возрастная группа Количество        
С Аскорбиновая кислота, мг     Младенцы 30-40 Поддерживает в здоровом состоянии кровеносные сосуды, кожу и костную ткань; стимулирует защитные силы организма, укрепляет иммунную систему; способствует обезвреживанию и выведению чужеродных веществ и ядов, улучшает усвоение железа     Быстрая утомляемость, сниженный иммунитет, хрупкость кровеносных сосудов (частые синяки, кровоточивость десен), плохое заживление ран, нарушение усвоения железа, в тяжелых случаях — цинга    
Дети 45-60
Подростки
Взрослые 70-80
Беременные и кормящие 90-120
Пожилые
А Ретинол, мг     Младенцы 0,4 Обеспечивает восприятие света глазом. Необходим для нормального развития и поддержания в здоровом состоянии слизистых оболочек органов дыхания, желудочно-кишечного тракта, выделительных и половых органов. Поддерживает активность иммунитета     Снижение остроты зрения, особенно в сумерках; истончение, сухость, шелушение кожи; сухость внутренних покровов влагалища; угревая сыпь, фурункулез; нарушение структуры и роста волос; сниженный иммунитет, склонность к бронхолегочным и простудным заболеваниям; нарушение репродуктивной функции яичников; изменения роговицы глаза, в тяжелых случаях — слепота    
Дети 0,5-0,7
Подростки 0,8-1,0
Взрослые 0,8-1,0
Беременные и кормящие 1,0-1,4
Пожилые 0,8-1,0
D Кальциферол, мкг   Младенцы Дети Подростки Взрослые Беременные и кормящие Пожилые 10-2,5 2,5 2,5   2,5 Необходим для усвоения кальция и фосфора, роста и развития костей и зубов   Повышенная нервная возбудимость, склонность к судорогам, особенно икроножной мышцы. Нарушение роста и сохранности костей и зубов. Склонность к переломам костей, их медленное срастание. Рахит в детском возрасте. Боли в костях и переломы шейки бедра в пожилом возрасте  
Е Токоферол, мг     Младенцы 3-4 Защищает клетки и ткани от повреждающего действия активных форм кислорода, предотвращает разрушительное действие физического и эмоционального напряжения (стресса)   Повышенная склонность к разрушению красных кровяных телец крови; анемия (малокровие); мышечная слабость; бесплодие    
Дети 5-10
Подростки 10—15
Взрослые 8-10
Беременные и кормящие 10-14
Пожилые 12-15
К Филлохинон, мкг Младенцы 5-10 Участвует в свертывании крови и обмене веществ костной ткани     Ухудшение свертываемости крови; склони ость к кровотечениям, в т. ч. обильным    
    Дети 15-30
    Подростки 45-65
    Взрослые 60-80
    Беременные и кормящие
    Пожилые 65-80
В1 Тиамин, мкг Младенцы 0,3-0,5 Участвует в обмене углеводов и обеспечении энергией нервной и мышечной систем, а также других органов и тканей     Ухудшение аппетита и сна, повышенная раздражительность, быстрая утомляемость, мышечная слабость, нарушения работы сердца, отеки    
    Дети 0,8-1,2
    Подростки 1,3-1,5
    Взрослые 1,1-2,1
    Беременные и кормящие 1,5-2,1
  Пожилые 1,1-1,4

Витамин (в сутки) Рекомендуемые суточные нормы потребления Роль в организме Последствия и проявления недостаточного потребления
    Возрастная группа Количество        
В2 Рибофлавин, мг Младенцы 0,4-0,6 Участвует в обмене жиров и обеспечении организма энергией. Важен для восприятия различных цветов в процессе рения     Трещины на губах и в углах рта; воспалительные изменения кожи (дерматит); малокровие анемия); светобоязнь, нарушение восприятия различных цветов    
  Дети 1,9-1,4
  Подростки 1,5-1,7
  Взрослые 1,5-2,4
  Беременные и кормящие 1,6-2,3
  Пожилые 1,3-1,6
В6 Пиридоксин, мг Младенцы 0,5 Участвует в обмене белка, аминокислот и серы, процессах кроветворения. Важен для деятельности нервной системы, состояния кожных покровов, волос, ногтей, костной ткани     Потеря аппетита, раздражительность, нервные срывы, депрессивные состояния; изменения слизистой оболочки языка, кожи, повышенная склонность к кариесу; ухудшение кроветворения, малокровие; предрасположенность к судорогам, склеротическим изменениям сосудов    
    Дети 1,5
    Подростки 2,0
    Взрослые 2,1
    Беременные и кормящие 2,5
    Пожилые 1,8
РР Ниацин, мг Младенцы 5-7 Участвует в обмене углеводов и обеспечении организма энергией. Важен для нервной, мышечной системы, состояния кожных покровов, желудочно-кишечного тракта     Вялость, апатия, потеря аппетита, сна, повышенная раздражительность, нервозность, быстрая утомляемость, расстройства стула, бледность и сухость кожи, воспалительные изменения кожи под действием света (фотодерматозы), сердцебиение, головокружение, истощение организма, болезненная потеря веса, психические расстройства    
    Дети 10-15
    Подростки 17-20
    Взрослые 14-28
    Беременные и кормящие 16-25
    Пожилые 13-18

Витамин (в сутки) Рекомендуемые суточные нормы потребления Роль в организме Последствия и проявления недостаточного потребления
    Возрастная группа Количество        
Фолиевая кислота, мг Младенцы 40-60 Необходима для деления клеток, роста и развития всех органов и тканей, нормального развития зародыша и плода, процессов кроветворения     Слабость, быстрая утомляемость, малокровие; нарушение работы желудочно-кишечного тракта, расстройство стула; во время беременности невынашивание, врожденные нарушения развития и уродства новорожденных  
    Дети 100-200
    Подростки
    Взрослые
  Беременные и кормящие
    Пожилые
В12 Кобаламин, мкг Младенцы 0,3-0,5 Необходим для кроветворения и нормального развития нервных волокон     Слабость, быстрая утомляемость, головокружение, сердцебиение, малокровие, дегенеративные изменения нервной системы    
    Дети 1-2
    Подростки
    Взрослые
    Беременные и кормящие
    Пожилые
Пантотеновая кислота, мг Младенцы 2-3 Участвует в обмене жиров и углеводов, образовании половых гормо

Наши рекомендации