Гипоталамо-гипофизарная система, ее функциональное значение. Значение нейросекреторных клеток гипоталамуса. Функции эпиталамуса.

Гипоталамо-гипофизарная система — объединение структур гипофиза и гипоталамуса, выполняющее функции как нервной системы, так и эндокринной. Этот нейроэндокринный комплекс является примером того, насколько тесно связаны в организме млекопитающих нервный и гуморальный способы регуляции

Гипоталамо-гипофизарная система состоит из ножки гипофиза, начинающейся в вентромедиальной области гипоталамуса, и трёх долей гипофиза: аденогипофиз (передняя доля), нейрогипофиз (задняя доля) и вставочная доля гипофиза. Работа всех трёх долей управляется гипоталамусом с помощью особых нейросекреторных клеток. Эти клетки выделяют специальные гормоны — рилизинг-гормоны. Рилизинг-факторы попадают в гипофиз, а точнее в аденогипофиз через воротную вену гипофиза[источник не указан 1083 дня].

Существует два типа рилизинг-факторов.

- освобождающие (под их действием клетки аденогипофиза выделяют гормоны)

- останавливающие (под их действием экскреция гормонов аденогипофиза прекращается)

На нейрогипофиз и вставочную долю гипоталамус влияет с помощью специальных нервных волокон, а не нейросекреторных клеток.

Ретикулярная формация мозгового ствола, ее нейронная организация, полисенсорность ретикулярных нейронов. Восходящая активирующая система мозгового ствола, характер влияния на кору головного мозга. Функциональные особенности специфических и неспецифических афферентных систем, связь с таламусом. Медиаторы ретикулярной формации, их характеристика.

Ретикулярная формация (formatio reticularis; РФ) мозга пред­ставлена сетью нейронов с многочисленными диффузными связями между собой и практически со всеми структурами центральной нервной системы. РФ располагается в толще серого вещества продолговатого, среднего, промежуточного мозга и изначально свя­зана с РФ спинного мозга. В связи с этим целесообразно ее рассмотреть как единую систему. Сетевые связи нейронов РФ между собой позволили Дейтерсу назвать ее ретикулярной фор­мацией мозга.

РФ имеет прямые и обратные связи с корой большого мозга, базальными ганглиями, промежуточным мозгом, мозжечком, сред­ним, продолговатым и спинным мозгом.

Основной функцией РФ является регуляция уровня активности коры большого мозга, мозжечка, таламуса, спинного мозга.

С одной стороны, генерализованный характер влияния РФ на многие структуры мозга дал основание считать ее неспецифической системой. Однако исследования с раздражением РФ ствола показали, что она может избирательно оказывать активирующее или тормо­зящее влияние на разные формы поведения, на сенсорные, моторные, висцеральные системы мозга. Сетевое строение обеспечивает высо­кую надежность функционирования РФ, устойчивость к поврежда­ющим воздействиям, так как локальные повреждения всегда ком­пенсируются за счет сохранившихся элементов сети. С другой сто­роны, высокая надежность функционирования РФ обеспечивается тем, что раздражение любой из ее частей отражается на активности всей РФ данной структуры за счет диффузности связей.

Большинство нейронов РФ имеет длинные дендриты и короткий аксон. Существуют гигантские нейроны с длинным аксоном, обра­зующие пути из РФ в другие области мозга, например в нисходящем направлении, ретикулоспинальный и руброспинальный. Аксоны ней­ронов РФ образуют большое число коллатералей и синапсов, которые оканчиваются на нейронах различных отделов мозга. Аксоны нейронов РФ, идущие в кору большого мозга, заканчиваются здесь на дендритах I и II слоев.

Активность нейронов РФ различна и в принципе сходна с ак­тивностью нейронов других структур мозга, но среди нейронов РФ имеются такие, которые обладают устойчивой ритмической актив­ностью, не зависящей от приходящих сигналов.

В то же время в РФ среднего мозга и моста имеются нейроны, которые в покое «молчат», т. е. не генерируют импульсы, но воз­буждаются при стимуляции зрительных или слуховых рецепторов. Это так называемые специфические нейроны, обеспечивающие бы­струю реакцию на внезапные, неопознанные сигналы. Значительное число нейронов РФ являются полисенсорными.

В РФ продолговатого, среднего мозга и моста конвергируют сигналы различной сенсорности. На нейроны моста приходят сигналы преимущественно от соматосенсорных систем. Сигналы от зритель­ной и слуховой сенсорных систем в основном приходят на нейроны РФ среднего мозга.

РФ контролирует передачу сенсорной информации, идущей через ядра таламуса, за счет того, что при интенсивном внешнем раздра­жении нейроны неспецифических ядер таламуса затормаживаются, тем самым снимается их тормозящее влияние с релейных ядер того же таламуса и облегчается передача сенсорной информации в кору большого мозга.

В РФ моста, продолговатого, среднего мозга имеются нейроны, которые реагируют на болевые раздражения, идущие от мышц или внутренних органов, что создает общее диффузное диском­фортное, не всегда четко локализуемое, болевое ощущение «тупой боли».

Повторение любого вида стимуляции приводит к снижению импульсной активности нейронов РФ, т. е. процессы адаптации (привыкания) присущи и нейронам РФ ствола мозга.

РФ ствола мозга имеет прямое отношение к регуляции мышечного тонуса, поскольку на РФ ствола мозга поступают сигналы от зри­тельного и вестибулярного анализаторов и мозжечка. От РФ к мотонейронам спинного мозга и ядер черепных нервов поступают сигналы, организующие положение головы, туловища и т. д.

Ретикулярные пути, облегчающие активность моторных систем спинного мозга, берут начало от всех отделов РФ. Пути, идущие от моста, тормозят активность мотонейронов спинного мозга, иннервирующих мышцы-сгибатели, и активируют мотонейроны мышц-разгибателей. Пути, идущие от РФ продолговатого мозга, вызывают противоположные эффекты. Раздражение РФ приводит к тремору, повышению тонуса мышц. После прекращения раздражения вызван­ный им эффект сохраняется длительно, видимо, за счет циркуляции возбуждения в сети нейронов.

РФ ствола мозга участвует в передаче информации от коры большого мозга, спинного мозга к мозжечку и, наоборот, от мозжечка к этим же системам. Функция данных связей заключается в под­готовке и реализации моторики, связанной с привыканием, ориентировочными реакциями, болевыми реакциями, организацией ходь­бы, движениями глаз.

Регуляция вегетативной деятельности организма РФ описана в разделе 4.3, здесь же заметим, что наиболее четко эта регуляция проявляется в функционировании дыхательного и сердечно-сосуди­стых центров. В регуляции вегетативных функций большое значение имеют так называемые стартовые нейроны РФ. Они дают начало циркуляции возбуждения внутри группы нейронов, обеспечивая то­нус регулируемых вегетативных систем.

Влияния РФ можно разделить в целом на нисходящие и восхо­дящие. В свою очередь каждое из этих влияний имеет тормозное и возбуждающее действие.

Восходящие влияния РФ на кору большого мозга повы­шают ее тонус, регулируют возбудимость ее нейронов, не изменяя специфику ответов на адекватные раздражения. РФ влияет на фун­кциональное состояние всех сенсорных областей мозга, следователь­но, она имеет значение в интеграции сенсорной информации от разных анализаторов.

РФ имеет прямое отношение к регуляции цикла бодрствова­ние—сон. Стимуляция одних структур РФ приводит к развитию сна, стимуляция других вызывает пробуждение. Г. Мэгун и Д. Моруцци выдвинули концепцию, согласно которой все виды сигналов, идущих от периферических рецепторов, достигают по коллатералям РФ продолговатого мозга и моста, где переключаются на нейроны, дающие восходящие пути в таламус и затем в кору большого мозга.

Возбуждение РФ продолговатого мозга или моста вызывает син­хронизацию активности коры большого мозга, появление медленных ритмов в ее электрических показателях, сонное торможение.

Возбуждение РФ среднего мозга вызывает противоположный эф­фект пробуждения: десинхронизацию электрической активности ко­ры, появление быстрых низкоамплитудных β-подобных ритмов в электроэнцефалограмме.

Г. Бремер (1935) показал, что если перерезать мозг между пе­редними и задними буграми четверохолмия, то животное перестает реагировать на все виды сигналов; если же перерезку произвести между продолговатым и средним мозгом (при этом РФ сохраняет связь с передним мозгом), то животное реагирует на свет, звук и другие сигналы. Следовательно, поддержание активного анализиру­ющего состояния мозга возможно при сохранении связи с передним мозгом.

Реакция активации коры большого мозга наблюдается при раз­дражении РФ продолговатого, среднего, промежуточного мозга. В то же время раздражение некоторых ядер таламуса приводит к воз­никновению ограниченных локальных участков возбуждения, а не к общему ее возбуждению, как это бывает при раздражении других отделов РФ.

РФ ствола мозга может оказывать не только возбуждающее, но и тормозное влияние на активность коры мозга.

Нисходящая система ретикулярной формации мозгового ствола, ее активирующие и тормозящие влияния. Механизм их действия на альфа – и гамма-мотонейроны спинного мозга, участие в развитии пост- и пресинаптического торможения, регуляции тонической и двигательной активности.

Нисходящие влияния РФ ствола мозга на регуляторную деятельность спинного мозга были установлены еще И. М. Сечено­вым (1862). Им было показано, что при раздражении среднего мозга кристалликами соли у лягушки рефлексы отдергивания лапки воз­никают медленно, требуют более сильного раздражения или не появляются вообще, т. е. тормозятся.

Г. Мэгун (1945—1950), нанося локальные раздражения на РФ продолговатого мозга, нашел, что при раздражении одних точек тормозятся, становятся вялыми рефлексы сгибания передней лапы, коленный, роговичный. При раздражении РФ в других точках про­долговатого мозга эти же рефлексы вызывались легче, были сильнее, т. е. их реализация облегчалась. По мнению Мэгуна, тормозные влияния на рефлексы спинного мозга может оказывать только РФ продолговатого мозга, а облегчающие влияния регулируются всей РФ ствола и спинного мозга.

Эфферентные связи – начинаются другим отделом мозга в ядрах шва и медиальной колонки. Медиальная колонка содержит гигантоклеточное ядро и также она содержит ретикулярное ядро моста. Отсюда формируются как восходящие так и нисходящие пути, отсюда же пути к ядрам черепно –мозговых нераов. Принято делить ретикулярную формация на восходящую и нисходящую. В составе каждой части имеются активирующие и тормозной. Нисходящий путь идет в спинной мозг(ретикуло-спинальный путь). Он частично перекрещенный проходит в вентральной части бокового канатика и заканчивается на нейронах передних рогов. В составе этого пути волокна возбуждающие и тормозящие. Влияние ретикулярной формации необходимы для произвольной регуляции проксимальных мышц, для сохранения положения тела и головы в пространстве. В продолговатом мозге ретикулярная формация имеется тормозящая зона и в гигантоклеточном – возбуждающая. Эти ядра влияют на тонус мышц. Тормозящие влияния проявляются в угнетении активности гаммо-моторных нейронов и стимулируется активность клеток Реншоу. Клетки Реншоу тормозят альфа моторные нейроны. Возбуждающие влияние увеличивают активность гамма моторных нейронов и снимают тормозящее действие с клеток Реншоу.

Лимбическая система, ее структуры. Основные физиологические функции. Роль лимбической системы в регуляции вегетативных, поведенческих реакций, участие в формировании эмоций и памяти. Понятие об инстинктах.

Лимбическая система представляет собой функциональное объ­единение структур мозга, участвующих в организации эмоционально-мотивационного поведения, таких как пищевой, половой, оборонительный инстинкты. Эта система участвует в организации цикла бодрствование—сон.

Лимбическая система как филогенетически древнее образование оказывает регулирующее влияние на кору большого мозга и под­корковые структуры, устанавливая необходимое соответствие уров­ней их активности.

Морфофункциональная организация. Структуры лимбической системы включают в себя 3 комплекса. Первый комплекс — древняя кора (препериформная, периамигдалярная, диагональная кора), обо­нятельные луковицы, обонятельный бугорок, прозрачная перегород­ка (рис. 4.12).

Вторым комплексом структур лимбической системы является ста­рая кора, куда входят гиппокамп, зубчатая фасция, поясная изви­лина.

Третий комплекс лимбической системы — структуры островковой коры, парагиппокамповая извилина.

И, наконец, в лимбическую систему включают подкорковые структуры: миндалевидные тела, ядра прозрачной перегородки, пе­реднее таламическое ядро, сосцевидные тела.

Особенностью лимбической системы является то, что между ее структурами имеются простые двусторонние связи и сложные пути, образующие множество замкнутых кругов (см. рис. 4.12). Такая организация создает условия для длительного циркулирования од­ного и того же возбуждения в системе и тем самым для сохранения в ней единого состояния и навязывание этого состояния другим системам мозга.

В настоящее время хорошо известны связи между структурами мозга, организующие круги, имеющие свою функциональную спе­цифику. К ним относится круг Пейпеса (гиппокамп à сосцевидные тела à передние ядра таламуса à кора поясной извилины à парагиппокампова извилина à гиппокамп). Этот круг имеет отно­шение к памяти и процессам обучения.

Другой круг (миндалевидное тело à гипоталамус à мезенцефальные структуры à миндалевидное тело) регулирует аг­рессивно-оборонительные, пищевые и сексуальные формы поведе­ния.

Считается, что образная (иконическая) память формируется кортико-лимбико-таламо-кортикальным кругом. Круги разного фун­кционального назначения связывают лимбическую систему со мно­гими структурами центральной нервной системы, что позволяет последней реализовать функции, специфика которых определяется включенной дополнительной структурой.

Например, включение хвостатого ядра в один из кругов лимби­ческой системы определяет ее участие в организации тормозных процессов высшей нервной деятельности.

Большое количество связей в лимбической системе, своеобразное круговое взаимодействие ее структур создают благоприятные условия для реверберации возбуждения по коротким и длинным кругам. Это, с одной стороны, обеспечивает функциональное взаимодействие частей лимбической системы, с другой — создает условия для за­поминания. Обилие связей лимбической системы со структурами центральной нервной системы затрудняет выделение функций мозга, в которых она не принимала бы участия. Так, лимбическая система имеет отношение к регулированию уровня реакции автономной, соматической систем при эмоционально-мотивационной деятельно­сти, регулированию уровня внимания, восприятия, воспроизведения эмоционально значимой информации. Лимбическая система опре­деляет выбор и реализацию адаптационных форм поведения, дина­мику врожденных форм поведения, поддержание гомеостаза, гене­ративных процессов. Наконец, она обеспечивает создание эмоцио­нального фона, формирование и реализацию процессов высшей нервной деятельности.

Нужно отметить, что древняя и старая кора лимбической системы имеет прямое отношение к обонятельной функции. В свою очередь обонятельный анализатор, как самый древний из анализаторов, является неспецифическим активатором всех видов деятельности коры большого мозга.

Некоторые авторы называют лимбическую систему висцераль­ным мозгом, т. е. структурой ЦНС, участвующей в регуляции деятельности внутренних органов. И действительно, миндалевид­ные тела, прозрачная перегородка, обонятельный мозг при их возбуждении изменяют активность вегетативных систем организма в соответствии с условиями окружающей среды. Это стало воз­можно благодаря установлению морфологических и функциональ­ных связей с более молодыми образованиями мозга, обеспечива­ющими взаимодействие экстероцептивных, интероцептивных сис­тем и коры височной доли.

Наиболее полифункциональными образованиями лимбической системы являются гиппокамп и миндалевидные тела. Физиология этих структур наиболее изучена.

Базальные ядра. Значение базальных ядер в координации двигательной активности как промежуточного звена между ассоциативными и двигательными зонами коры. Связи базальных ядер со средним мозгом, таламусом и другими отделами ЦНС. Дофаминергические нейроны. Физиологические эффекты, возникающие при раздражении и разрушении различных отделов базальных ядер. Болезнь Паркинсона.

К базальным ганглиям относят комплекс нейронных узлов серого вещества, которые располагаются в белом веществе больших полушарий головного мозга. Эти образования называют стриополитарной системой. Относится хвостатое ядро, скорлупа – вместе они образуют полосатое тело. Бледный шар на разрезе состоит из 2х сегментов – наружного и внутреннего. Наружный сегмент бледного шара имеет общее происхождение с полосатым телом. Внутренний сегмент развивается из серого вещества промежуточного мозга. Эти образования имеют тесную связь с субталамическими ядрами промежуточного мозга, с черной субстанцией среднего мозга, которая состоит из двух частей – вентральной части(сетчатой) и дорсальной(компактная).

Нейроны компактной части вырабатывают дофамин. А сетчатая часть черной субстанции по строению и функциям напоминает нейроны внутреннего сегмента бледного шара.

Черная субстанция образует связи с передним вентральным ядром зрительного бугра, бугорками четверохолмия, с ядрами моста и двухсторонние связи с полосатым телом. Эти образования получают афферентные сигналы и сами формируют эфферентные пути. Чувствительные пути к базальным ганглиям идут от коры больших полушарий и главный афферентный путь начинается от моторной и премоторной зоны коры.

Корковое поля 2,4,6,8. Эти пути идут к полосатому телу и бледному шару. Имеется определенная топография проекции мышц дорсальной части скорлупы представлены мышцы ног, рук, а в вентральной части – рта и лица. От сегментах бледного шара идут пути к зрительному бугру переднем вентральному и вентролатеральному ядрам, от которых информация будет возвращаться в кору.

Большое значение играют пути к базальным ядрам от зрительных бугров. Обеспечивают получение сенсорной информации. К базальным ядрам также через зрительный бугор передаются влияния от мозжечка. Также имеются чувствительные пути к полосатому телу от черной субстанции. Эфферентные пути представлены связями полосатого тела с бледными шарами, с черной субстанцией, ретикулярной формацией ствола мозга, от бледного шара идут пути к красному ядру, к субталамическим ядрам, к ядрам гипоталамуса и зрительных бугров. На подкорковом уровне сложные кольцевые взаимодействия.

Связи коры больших полушарий, зрительного бугра базальные ганглии и снова кора формируют два пути: прямой(обеспечивает облегчение прохождения импульсов) и непрямой(тормозной)

Непрямой путь. Оказывает тормозящее действие. Этот путь тормозной идет от полосатого тела к наружному сегменту бледного шара и полосатое тело тормозит наружный сегмент бледного шара. Наружный сегмент бледного шара тормозит Люисово тело, которое в норме оказывает возбуждающие действие на внутренний сегмент бледного шара. В этой цепочке есть два последовательных торможения.

Черная субстанция(вырабатывает дофамин) В полосатом теле есть 2 вида рецепторов Д1- возбуждающие, Д2 – тормозящие. Полосатое тело с черной субстанцией два тормозящих пути. Черная субстанция тормозит полосатое тело дофамином, а полосатое тело черную субстанцию ГАМК. Высокое содержание меди в черной субстанции, синем пятне ствола мозга. Возникновение стриополитарной системы было необходимо для совершения перемещения тело в пространстве - плаванье, ползанье, полет. Эта система образует связь с подкорковыми двигательными ядрами(красное ядро, покрышка среднего мозга, ядра ретикулярной формации, вестибулярные ядра) От этих образований – нисходящие пути в спинной мозг. Все это вместе образует экстрапирамидную систему.

Двигательная активность реализуется через пирамидную систему – нисходящие пути. Каждое полушарие связано с противоположной половиной тела. В спинном мозге с альфа моторными нейронами. Через пирамидную систему реализуются все наши желания. Она работает с мозжечком, экстрапирамидной системы и выстраивается несколько контуров – кора мозжечка, кора, экстрапирамидная система. Зарождение мысли возникает в коре. Для того, чтобы его совершить необходим план движения. Который включает в себя несколько компонентов. Они связываются в один образ. Для этого нужны программы.Программы быстрых движений – в мозжечке. Медленных – в базальных ганглиях. Кора выбирает необходимые программы. Она создает единственную общую программу, которая будет реализовано через спинальные пути. Чтобы сделать бросок мяча в кольцо нам нужно принять определенную позу, распределить тонус мышц – это все на подсознательном уровне – экстрапирамидная система. Когда все будет готово произойдет само движение. Стриополитарная система может обеспечивать стереотипные заученные движения – ходьба, плаванье, езда на велосипеде, но только когда они заучены. При выполнение движение стриополитарная система определяет масштаб движений – амплитуда движений. Масштаб определяется стриополитарной системой. Гипотония-пониженный тонус с гиперкинезом - повышенная двигательная активность.

Симптомы поражения базальных ганглиев

К чисту гиперкинезов(сопровождаются снижением тонуса мышц) относятчя

-Хорея - связана с дегеративными поражениями схвостатого ядра и проявляется в возникновении быстрых танцующих движений. Возникает богатая мимика, непрерывная игра пальцами рук, причмокивание, развивается в результате ревматического поражения. Все движения непроизвольные

-Атетоз - обусловлен поражением скорлупы и бледного шара и характеризуется медленными, извивающимися движениями – червеобразными движениями, которые начинаются с дистальных отделов конечностей и постепенно пермещаются на проксимальные.

-Баллизм - размашистые движения верхних и нижних конечностей

-Болезнь Гентингтона -утрата холинергических и ГАМК секретируещих нейронов полосатого тела. Это генетическое заболевание. Оно развивается в результате появление аномального гена в4ой хромосоме. Развивается от 14 до 50 лет, сопровождается с движениями, характерными для «Хорея» и одновременно развивается прогрессирующие слабоумие. Заболевание приводит к гибели через 15-20 лет.

Гиперкинез в сочетании с гипертонией – Болезнь Паркинсона(уменьшение выработки дофамина в нейронах компактной части черной субстанции. Черная субстанция оказывает тормозящее действие на полосатое тело. Таким образом снижается содержание дофамина в полосатом теле. Симптомы – снижение дофамина до 50 % от нормы. Одновременно снижается содержание и норадреналина в гипоталамусе.). Симптомы – мелкие движения пальцев рук, мимика, гипертония(повышается тонус мышц, в основном сгибателей. Поза – руки приведены к туловищу, колени согнуты, голова прижата. Дрожание в покое –Тренор, маскообразное лицо, замедленная речь). Симптом складного ножа –попытка согнуть руку в локтевом суставе – сначала большое сопротивление, а потом легко. Симптом зубчатого колеса – периодическая смена повышения и снижения тонуса.

Вводят препараты Эльдофа – могут проникать через гемоэнцефалический барьер и превращаются в дофамин. Помогают блокаторы, которые разрушает норажреналин и дофамин. Есть попытки вживления клеток, взятых у мертвых новорожденных из черной субстанции

Функциональная роль автономной (вегетативной) нервной системы в организме человека. Сравнительная характеристика автономной и соматической нервной системы. Соматическая и автономная рефлекторные дуги. Понятие об аксон-рефлексе.

На основании структурно-функциональных свойств автономную нервную систему принято делить на симпатическую, парасимпати­ческую и метасимпатическую части. Из них первые две имеют центральные структуры и периферический нервный аппарат, метасимпатическая же часть целиком лежит на периферии в стенках внутренних органов.

Дуга автономного рефлекса (рис. 4.22), как и соматическая рефлекторная дуга, состоит из трех звеньев: чувствительного (аф­ферентного, сенсорного), ассоциативного (вставочного) и эффекторного. В зависимости от уровня замыкания, т. е. расположения ас­социативного звена, различают местные, или ганглионарные, спинальные, бульварные и т. д. рефлекторные дуги. Рефлексы, возникающие при раздражении чувствительных волокон, идущих в составе симпатических и парасимпатических нервов, вовлекают в деятельность не только автономную, но и соматическую нервную систему. Чувствительные волокна этой единой (автономной и со­матической) афферентной системы являются отростками биполярных клеток, лежащих в спинномозговых узлах или их аналогах, таких как яремный, тройничный (гассеров) узлы и др. Такое понимание справедливо для сегментарных и рефлекторных дуг более высокого порядка и не относится к местным периферическим дугам автоном­ного рефлекса.

Наряду с общим для обеих (автономной и соматической) систем звеном существует и собственный афферентный путь автономной нервной системы, называемый особым, или висцеральным. Он со­здает основу для путей местных рефлексов, осуществляемых неза­висимо, без участия ЦНС. По локализации клеточных тел чувст­вительных нейронов, по ходу и длине отростков их разделяют на три группы. В первую группу объединены клетки, тела которых локализуются в узлах солнечного и нижнего брыжеечного сплетений. Один из их длинных отростков направляется на периферию, другой в сторону спинного мозга. Клетки второй группы характеризуются тем, что их длинный отросток идет к рабочему органу, короткие распределяются в самом ганглии и синаптически контактируют с вставочным или эффекторным нейронами. Висцеральные чувстви­тельные клетки третьей группы отличаются тем, что их тела и короткие отростки располагаются в интрамуральных узлах, длинные же отростки в составе соответствующих нервов достигают симпати­ческих узлов, где и происходит переключение на ассоциативный и моторный (эфферентный) нейрон.

Висцеральная чувствительность обусловлена активностью пяти отдельных типов интероцепторов: механо-, хемо-, термо-, осмо- и ноцицепторов, называемых специфическими. Из них наиболее рас­пространенными являются механорецепторы.

Среди механорецепторов внутренних органов известны ре­цепторы двух типов: быстро- и медленноадаптирующиеся. Быстроадаптирующиеся механорецепторы характеризуются высоким по­рогом возбуждения и встречаются в основном в слизистой оболочке и серозном слое висцеральных органов и связаны преимущественно с миелиновыми волокнами. Характерной чертой быстроадаптирующихся рецепторов являются исключительная чувствительность к динамической фазе движения и сокращения. Для медленноадаптирующихся механорецепторов, наоборот, характерна генерация сиг­налов в течение длительного периода раздражения или после его окончания. Эти рецепторы имеются во всех внутренних органах и характеризуются низким порогом возбуждения. Такая особенность позволяет им быть спонтанно-активными и направлять в нервные центры разнообразную информацию о сокращении, расслаблении, растяжении, смещении висцеральных органов. Медленноадаптиру­ющиеся рецепторы связаны с тонкими миелинизированными и безмиелиновыми нервными волокнами.

Разновидностью висцеро-висцерального является аксон-рефлекс. Это понятие охватывает рефлекторные процессы, осуществляющиеся по разветвлениям аксона без участия тела нервной клетки. Воз­буждение возникает в одной ветви аксона, затем переходит на другую и по ней направляется к исполнительному органу, вызывая соответствующую реакцию. Есть и другое объяснение возникновению аксон-рефлекса. Экспериментально доказано, что при возбуждении непосредственно рецепторов из рецепторных мембран выделяются биологически активные вещества типа АТФ и разнообразных пеп­тидов, обладающих вазодилататорным действием, которые вызывают соответствующий эффект.

Понятие аксон-рефлекса используется довольно широко. Им, например, объясняют механизм возникновения сосудистой реакции при раздражении кожных болевых рецепторов. Аксон-рефлекс уда­ется воспроизвести даже после удаления спинного мозга, а также дегенерации симпатических волокон, иннервирующих сосудистую стенку исследуемой области.

Структурно-функциональная характеристика симпатического отдела вегетативной нервной системы: локализация преганглионарных нейронов, паравертебральные и превертебральные ганглии, иннервируемые органы. Cимпато-адреналовая система, функциональное единство механизмов гормональной и нейромедиаторной регуляции. Влияние симпатического отдела на деятельность внутренних органов.

Симпатическая часть автономной нервной системы (рис. 4.25) имеет центральный аппарат, или спинномозговой (торако-люмбальный) центр Якобсона, который представлен симпатическим ядром бокового рога серого вещества спинного мозга. Это ядро простирается от I—II грудных до II—IV поясничных сегментов. Отростки составляющих ядро клеток называются преганглионарными волокнами. Они выходят из спинного мозга в составе его передних корешков через межпозвоночные отверстия. Вскоре после выхода симпатические волокна отделяются от двигательных соматических (см. рис. 4.15) и далее в виде белых соединительных ветвей вступают в узлы пограничного симпатического ствола. Часть волокон образует здесь синаптические контакты с клетками узлов, часть проходит узлы транзитом и вступает в синаптический контакт либо с клетками других узлов пограничного симпатического ствола, либо превертебральных (чревное сплетение, нижнее брыжеечное сплетение) узлов.

Периферический отдел симпатической части автономной нервной системы образован эфферентными и чувствительными ней­ронами и их отростками, располагающимися в удаленных от спинного мозга узлах. В околопозвоночных, или паравертебральных, узлах часть преганглионарных симпатических волокон синаптически окан­чивается на эфферентных нейронах. Волокна эфферентных нейронов, именуемые постганглионарными, разделяются на две группы. Волок­на одной из них в виде серых соединительных ветвей вновь вступают в соматический нерв и в его составе без перерыва достигают эффекторного органа (сосуды кожи, мышц), волокна другой группы, собрав­шись в отдельные веточки, образуют обособленный стволик, направ­ляющийся либо непосредственно к исполнительным органам, либо к предпозвоночным узлам, а через них далее также к исполнительным органам. Постганглионарные волокна в большинстве своем лишены миелиновой оболочки, поэтому имеют розово-серую окраску. Серые ветви отходят от всех узлов пограничного симпатического ствола, ко­торый делится на шейную, грудную, поясничную, крестцовую части.

Предпозвоночные, или превертебральные, узлы лежат на большом расстоянии от центральной нервной системы. На их эффекторных нейронах заканчиваются прошедшие, не прерываясь через узлы по­граничного симпатического ствола, преганглионарные волокна.

Основную массу узлов составляют нервные клетки. В строме ганглиев найдены чувствительные окончания. В синапсах отчетливо выделяются пре- и постсинаптические мембраны, отмечается боль­шое количество пузырьков, митохондрий, трубочек эндоплазматической сети.

Структурно-функциональная характеристика парасимпатического отдела вегетативной нервной системы, локализация преганглионарных нейронов, экстрамуральные и интрамуральные ганглии, иннервируемые органы. Влияние парасимпатического отдела на эффекторные органы.

Парасимпатическая часть автономной нервной системы имеет общую структуру, подобную симпатической части: здесь также вы­деляют центральные и периферические образования. Как и в симпатической части, передача возбуждения к исполнительному органу осуществляется по двухнейронному пути. Вместе с тем ряд признаков отличает парасимпатическую часть от симпатической.

Во-первых, центральные структуры парасимпатической части расположены в трех различных, далеко отстоящих друг от друга участках мозга; во-вторых, характерно наличие значительно более длинных преганглионарных и чрезвычайно коротких постганглионарных волокон; в-третьих, парасимпатические волокна иннервируют, как правило, только определенные зоны тела, которые также снабжаются симпатической, а в значительной части, кроме того, и метасимпатической иннервацией.

Центральные образования парасимпатической части ав­тономной нервной системы включают ядра, лежащие в среднем, продолговатом и спинном мозге. В среднем мозге находится пара­симпатическое добавочное ядро глазодвигательного нерва (ядро Яку­бовича, Вестфаля — Эдингера), расположенное вблизи передних бугров четверохолмия; в продолговатом мозге — три пары ядер, от которых начинаются преганглионарные волокна, выходящие из мозга в составе VII, IX, X пар черепных нервов (лицевого, языкоглоточного, блуждающего). Здесь проходят слюноотделительные, слезоот­делительные, а также двигательный и секреторный пути для внут­ренних органов (блуждающий нерв). Парасимпатические ядра спин­ного мозга располагаются в области I—III или II—IV крестцовых сегментов в боковых рогах серого вещества.

Периферические структуры парасимпатической части автономной нервной системы включают нервные волокна и соответствующие ганглии. Преганглионарные волокна из среднего мозга выходят сбоку от ножек большого мозга в составе глазодвигательного нерва, проникают через глазную щель в глазницу и синаптически заканчиваются на эффекторных клетках расположенного в глубине глазницы ресничного узла. От него отходят два коротких ресничных нерва. Составляющие их постганглионарные волокна вступают в глазное яблоко, разветвляясь в аккомодационной мышце и сфинктере зрачка.

В продолговатом мозге нервные волокна из верхнего слюноотдели­тельного ядра идут в составе лицевого нерва и, покидая его, образуют барабанную струну, которая позже присоединяется к язычному нерву. Последний достигает челюстного или подъязычного узла, постгангли­онарные волокна которого иннервируют подчелюстную слюнную же­лезу. Преганглионарные волокна, выходящие из нижнего слюноотде­лительного ядра, вступают в языкоглоточный нерв и далее попадают в ушной узел. Его постганглионарные волокна являются секреторными для околоушной слюнной железы. Преганглионарные волокна из ядер слезоотделительного пути через лицевой нерв вступают в крылонебный узел, постганглионарные волокна которого достигают слюнной железы, желез слизистой оболочки носа и неба.

Блуждающий нерв является смешанным: он включает аф­ферентные и эфферентные парасимпатические, чувствительные и двигательные соматические, а также эфферентные симпатические волокна. По выходе из черепа нерв образует два последовательно лежащих узла: верхний и нижний (яремный и узловой). Верхний узел содержит в основном чувствительные клетки, аналогичные клеткам спинномозговых узлов. От нижнего узла берут начало сердечный депрессорный нерв, возвратный гортанный нерв, пище­водные ветви. У корня легкого от блуждающего нерва отходят соответствующие веточки к легкому. В брюшной полости нерв пе­реходит на желудок, формируя желудочное сплетение, от которого отходят стволики в чревное (солнечное) сплетение. Грудная и брюш­ная части блуждающего нерва могут рассматриваться лишь как проводники, связывающие центральные стр<

Наши рекомендации