Характеристика гормональной регуляции

У рефлекторной реакции может быть гормональное зве­но, что характерно для регуляции функций внутренних органов -вегетативных функций, в отличие от соматических функций, реф­лекторная регуляция которых осуществляется только нервным пу­тем (деятельность опорно-двигательного аппарата). Если включа­ется гормональное звено, то это осуществляется за счет дополнительной выработки биологически активных веществ. Напри­мер, при действии на экстерорецепторы сильных раздражителей (холод, жара, болевой раздражитель) возникает мощный поток аф­ферентных импульсов, поступающих в ЦНС, при этом в кровь выб­расывается дополнительное количество адреналина и гормонов коры надпочечников, играющих адаптивную (защитную) роль.

Гормоны (греч. погтаб - возбуждаю) - биологически актив­ные вещества, вырабатываемые эндокринными железами или спе­циализированными клетками, находящимися в различных органах (например, в поджелудочной железе, в желудочно-кишечном трак­те). Гормоны вырабатываются также нервными клетками - ней-рогормоны, например, гормоны гипоталамуса (либерины и стати-ны), регулирующие функцию гипофиза. Биологически активные вещества вырабатываются также неспециализированными клет­ками - тканевые гормоны (паракринные гормоны, гормоны мест­ного действия, паракринные факторы - парагормоны). Действие гормонов или парагормонов непосредственно на соседние клет­ки, минуя кровь, называют паракринным действием. По месту действия на органы-мишени или на другие эндокринные железы гормоны делят на две группы: 1) эффекторные гормоны, дей­ствующие на клетки-эффекторы (например, инсулин, регулирую­щий обмен веществ в организме, увеличивает синтез гликогена в клетках печени, увеличивает транспорт глюкозы и других веществ через клеточную мембрану, повышает интенсивность синтеза бел­ка); 2) тройные гормоны (тропины), действующие на другие эндокринные железы и регулирующие их функции (например, ад-

ренокортикотропный гормон гипофиза - кортикотропин (АКТГ) -регулирует выработку гормонов корой надпочечников).

Виды влияний гормонов. Гормоны оказывают два вида влия­ний на органы, ткани и системы организма: функциональное (игра­ют весьма важную роль в регуляции функций организма) и морфоге-нетическое (обеспечивают морфогенез - рост, физическое, половое и умственное развитие; например, при недостатке тироксина стра­дает развитие ЦНС, следовательно, и умственное развитие).

1. Функциональное влияние гормонов бывает трех видов.

Пусковое влияние - это способность гормона запускать дея­тельность эффектора. Например, адреналин запускает распад гли­когена в печени и выход глюкозы в кровь, вазопрессин (антидиуре­тический гормон - АДГ) включает реабсорбцию воды из собирательных трубок нефрона в интерстиций почки.

Модулирующее влияние гормона — изменение интенсивности протекания биохимических процессов в органах и тканях. Напри­мер, активация тироксином окислительных процессов, которые могут проходить и без него; стимуляция адреналином деятельнос­ти сердца, которая проходит и без адреналина. Модулирующим влиянием гормонов является также изменение чувствительности ткани к действию других гормонов. Например, фолликулин усили­вает действие прогестерона на слизистую оболочку матки, тирео-идные гормоны усиливают эффекты катехоламинов.

Пермиссивное влияние гормонов - способность одного гормо­на обеспечивать реализацию эффекта другого гормона. Например, инсулин необходим для проявления действия соматотропного гор­мона, фоллитропин необходим для реализации эффекта лютропина.

2. Морфогенетическое влияние гормонов (на рост, физическое
и половое развитие) подробно изучается другими дисциплинами
(гистология, биохимия) и лишь частично - в курсе физиологии (см.
гл. 6). Оба вида влияний гормонов (морфогенетическое и функцио­
нальное) реализуются сломощью метаболических процессов, за­
пускаемых посредством клеточных ферментных систем.

РЕГУЛЯЦИЯ С ПОМОЩЬЮ МЕТАБОЛИТОВ

И ТКАНЕВЫХ ГОРМОНОВ.

МИОГЕННЫЙ МЕХАНИЗМ РЕГУЛЯЦИИ.

РЕГУЛИРУЮЩАЯ ФУНКЦИЯ ГЭБ

Метаболиты - продукты, образующиеся в организме в процессе обмена веществ как результат различных биохимических реакций. Это аминокислоты, нуклеотиды, коферменты, угольная кислота, мо-





лочная, пировиноградная, адениловая кислоты, ионный сдвиг, изме­нения рН. Регуляция с помощью метаболитов на ранних этапах фило­генеза была единственной. Метаболиты одной клетки непосредствен­но влияли на другую, соседнюю клетку или группу клеток, которые в свою очередь таким же способом действовали на следующие клет­ки (контактная регуляция). С появлением гемолимфы и сосуди­стой системы метаболиты стали передаваться и другим клеткам орга­низма с движущейся гемолимфой на большие расстояния, причем осуществляться это стало быстрее. Затем появилась нервная систе­ма как регулирующая система, а еще позже - эндокринные желе­зы. Метаболиты хотя и действуют в основном как местные регуля­торы, но могут влиять и на другие органы и ткани, на активность нервных центров. Например, накопление угольной кислоты в крови ведет к возбуждению дыхательного центра и усилению дыхания. Примером местной гуморальной регуляции может служить гипере­мия интенсивно работающей скелетной мышцы - накапливающие­ся метаболиты обеспечивают расширение кровеносных сосудов, что увеличивает доставку кислорода и питательных веществ к мышце. Подобные регуляторные влияния метаболитов происходят и в дру­гих активно работающих органах и тканях организма.

Тканевые гормоны: биогенные амины (гистамин, серотонигг), простагландины и кинины. Занимают промежуточное положение между гормонами и метаболитами как гуморальные факторы ре­гуляции. Эти вещества свое регулирующее влияние оказывают на клетки тканей посредством изменения их биофизических свойств (проницаемости мембран, их возбудимости), изменения интенсивности обменных процессов, чувствительности клеточных рецепторов, образования вторых посредников. В результате это­го изменяется чувствительность клеток к нервным и гумораль­ным влияниям. Поэтому тканевые гормоны называют модуля­торами регуляторных сигналов - они оказывают модулирующее влияние. Тканевые гормоны образуются неспециализированны­ми клетками, но действуют они посредством специализированных клеточных рецепторов, например, для гистамина обнаружено два вида рецепторов - Н( и Н2. Поскольку тканевые гормоны влияют на проницаемость клеточных мембран, они регулируют поступ­ление в клетку и выход из клетки различных веществ и ионов, определяющих мембранный потенциал, а значит и развитие по­тенциала действия.

Миогенный механизм регуляции. С развитием мышечной системы в процессе эволюции миогенный механизм регуляции фун­кций постепенно становится все более заметным. Организм чело­века примерно на 50% состоит из мышц. Это скелетная мускулату-

ра (40% массы тела), мышца сердца, гладкие мышцы кровеносных илимфатических сосудов, стенки желудочно-кишечного тракта, желчного, мочевого пузырей и других внутренних органов.

Сущность миогенного механизма регуляции состоит в том, что предварительное умеренное растяжение скелетной или сердечной мышцы увеличивает силу их сокращений. Сократительная актив­ность гладкой мышцы также зависит от степени наполнения поло­го мышечного органа, а значит и его растяжения. При увеличении наполнения органа тонус гладкой мышцы сначала возрастает, а за­тем возвращается к исходному уровню (пластичность гладкой мыш­цы), что обеспечивает регуляцию тонуса сосудов и наполнение внут­ренних полых органов без существенного повышения давления в них (до определенной величины). Кроме того, большинство глад­ких мышц обладают автоматией, они постоянно находятся в неко­торой степени сокращения под влиянием импульсов, возникающих в них самих (например, мышцы кишечника, кровеносных сосудов). Импульсы, поступающие к ним по вегетативным нервам, оказыва­ют модулирующее влияние - увеличивают или уменьшают тонус гладких мышечных волокон.

Регулирующая функция ГЭБ заключается и в том, что он формирует особую внутреннюю среду мозга, обеспечивающую оп­тимальный режим деятельности нервных клеток. Считают, что ба­рьерную функцию при этом выполняет особая структура стенок капилляров мозга. Их эндотелий имеет очень мало пор, узкие ще­левые контакты между клетками почти не содержат окошек. Со­ставной частью барьера являются также глиальные клетки, обра­зующие своеобразные футляры вокруг капилляров, покрывающие около 90% их поверхности. Наибольший вклад в развитие пред­ставлений о гемато-энцефалическом барьере сделали Л. С. Штерн и ее сотрудники. Этот барьер пропускает воду, ионы, глюкозу, амино­кислоты, газы, задерживая многие физиологически активные веще­ства: адреналин, серотонин, дофамин, инсулин, тироксин. Однако в нем существуют «окна»,*через которые соответствующие клетки мозга - хеморецепторы - получают прямую информацию о наличии в крови гормонов и других, не проникающих через барьер веществ; клетки мозга выделяют и свои нейросекреты. Зоны мозга, не имею­щие собственного гемато-энцефалического барьера, - это гипофиз, эпифиз, некоторые отделы гипоталамуса и продолговатого мозга.

ГЭБ выполняет также защитную функцию - предотвра­щает попадание микробов, чужеродных или токсических веществ экзо- и эндогенной природы в межклеточные пространства мозга. ГЭБ не пропускает многие лекарственные вещества, что необходи­мо учитывать в медицинской практике.





СИСТЕМНЫЙ ПРИНЦИП РЕГУЛЯЦИИ

Поддержание показателей внутренней среды организма осуще­ствляется с помощью регуляции деятельности различных органов и физиологических систем, объединяемых в единую функциональ­ную систему - организм. Представление о функциональных систе­мах разработал П. К. Анохин (1898-1974). В последние годы тео­рия функциональных систем успешно развивается К. В. Судаковым.

А. Структура функциональной системы. Функциональная система - это динамическая совокупность различных органов и физиологических систем организма, формирующаяся для достиже­ния полезного приспособительного результата. Например, чтобы быстро пробежать дистанцию, необходимо максимально усилить деятельность сердечнососудистой, дыхательной, нервной систем и мышц. Функциональная система включает следующие элементы: 1) управляющее устройство - нервный центр, представляющий объединение ядер различных уровней ЦНС; 2) его выходные ка­налы (нервы и гормоны); 3) исполнительные органы - эффекто­ры, обеспечивающие в ходе физиологической деятельности поддер­жание регулируемого процесса (показателя) на некотором оптимальном уровне (полезный результат деятельности функцио­нальной системы); 4) рецепторы результата (сенсорные рецеп­торы) - датчики, воспринимающие информацию о параметрах от­клонения регулируемого процесса (показателя) от оптимального уровня; 5) канал обратной связи (входные каналы), информиру­ющий нервный центр с помощью импульсаций от рецепторов ре­зультата или с помощью непосредственного действия химических веществ на центр - информация о достаточности или недостаточ­ности эффекторных усилий по поддержанию регулируемого про­цесса (показателя) на оптимальном уровне (рис. 2.7).

Афферентные импульсы от рецепторов результата по каналам обратной связи поступают в нервный центр, регулирующий тот или иной показатель, центр обеспечивает изменение интенсивности работы соответствующего органа.

При изменении интенсивности работы эффектора изменяется интенсивность метаболизма, что также играет важную роль в регуляции деятельности органов той или иной функциональной системы (гуморальный процесс регуляции).

Б. Мультипараметрический принцип взаимодействия различных функциональных систем — принцип, определяющий обобщенную деятельность функциональных систем (К. В. Судаков). Относительная стабильность показателей внутренней среды орга­низма является результатом согласованной деятельности многих

характеристика гормональной регуляции - student2.ru

функциональных систем. Выяснилось, что различные показатели внутренней среды организма оказываются взаимосвязанными. Например, избыточное поступление воды в организм сопровожда­ется увеличением объема циркулирующей крови, повышением артериального давления, снижением осмотического давления плаз­мы крови. В функциональной системе, поддерживающей оптималь­ный уровень газового состава крови, одновременно осуществляет­ся взаимодействие рН, РС02 и Р02. Изменение одного из этих параметров немедленно приводит к изменению количественных ха­рактеристик других параметров. Для достижения любого приспо­собительного результата формируется соответствующая функцио­нальная система.

В. Системогенез. Согласно П. К. Анохину, системогенез -избирательное созревание и развитие функциональных систем в анте- и постнатальнрм онтогенезе. В настоящее время тер­мин «системогенез» применяется в более широком смысле, при этом под системогенезом понимают не только процессы онтогенетиче­ского созревания функциональных систем, но и формирование и преобразование функциональных систем в ходе жизнедеятельнос­ти организма.

Системообразующими факторами функциональной системы любого уровня являются полезный для жизнедеятельности организ­ма приспособительный результат, необходимый в данный момент, и формирующаяся при этом мотивация. Например, для соверше­ния прыжка в высоту с шестом ведущую роль играют мышцы верх-

них конечностей, при прыжке в длину - мышцы нижних конечно­стей.

Гетерохронность созревания функциональных систем. В ходе антенатального онтогенеза различные структуры организма зак­ладываются в разное время и созревают различными темпами. Так, нервный центр группируется и созревает обычно раньше, чем закла­дывается и созревает иннервируемый им субстрат. В онтогенезе созревают в первую очередь те функциональные системы, без которых невозможно дальнейшее развитие организма. Напри­мер, из трех функциональных систем, связанных с полостью рта, пос­ле рождения сформированной оказывается лишь функциональная система сосания, позже формируется функциональная система жевания, затем функциональная система речи.

Консолидация компонентов функциональной системы -объединение в функциональную систему отдельных фрагментов, развивающихся в различных частях организма. Консолидация фраг­ментов функциональной системы - критический пункт развития ее физиологической архитектуры. Ведущую роль в этом про­цессе играет ЦНС. Например, сердце, сосуды, дыхательный аппа­рат, кровь объединяются в функциональную систему поддержания постоянства газового состава внутренней среды на основе совер­шенствования связей между различными отделами ЦНС, а также на основе развития иннервационных связей между ЦНС и соответ­ствующими периферическими структурами.

Все функциональные системы различного уровня имеют одинаковую архитектонику (структуру).

Наши рекомендации