Джеймс Дж. Плорд (James f. Plorde)
Для диагностики инфекционной болезни требуется прямое или непрямое обнаружение патогенного микроорганизма в тканях пораженного макроорганизма. В данной главе описаны основные методы, с помощью которых это достигается.
Прямое микроскопическое исследование. Прямое микроскопическое исследование тканевых жидкостей, экссудатов и тканей является одновременно самым простым и одним из наиболее информативных лабораторных методов, применяемых в диагностике инфекционных болезней. Во многих случаях это исследование позволяет провести точную, высокоспецифичную идентификацию этиологического агента. Примерами могут служить распознавание Borrelia или Plasmodium в мазках крови, полученных от больных с рецидивирующей лихорадкой или малярией. На основании изучения морфологии возбудителя может быть произведена более общая, предположительная идентификация его. Тем не менее эта информация часто бывает достаточной для того, чтобы выбрать соответствующий химиотерапевтический препарат в ожидании результатов более точных исследований. При прямой микроскопии используют множество методик. Если искомый агент имеет большие размеры или характерную морфологию, из исследуемого материала можно приготовить неокрашенные влажные препараты и исследовать в светлом поле, в темном поле или с помощью фазово-контрастной микроскопии. Гораздо чаще для прямой микроскопии приготавливают высушенные мазки; это позволяет применить разнообразные окраски, которые облегчают выявление и идентификацию искомого микроорганизма.
Влажные препараты. Исследование в темном поле отделяемого пораженных половых органов на бледную трепонему хорошо известно, но им обычно пренебрегают. Влажные препараты часто используют для диагностики грибковых и паразитарных инфекций. Для установления диагноза поверхностных микозов целесообразно исследовать фрагменты волоса, кожные чешуйки или срезанные ногтевые пластинки в капле 10% раствора КОН. Иногда, как это имеет место при опоясывающем лишае, грибковые элементы настолько характерны, что позволяют произвести специфическую идентификацию этиологического агента по данным одной микроскопии. На основании этой процедуры в ряде случаев может быть установлен предположительный диагноз системной грибковой инфекции. Примерами являются криптококковый менингит, диагностируемый при выявлении инкапсулированного микроорганизма в препарате цереброспинальной жидкости, окрашенном индийскими чернилами, и кокцидиоидоз, идентифицируемый в результате нахождения в выделяемой больным мокроте характерных сферул.
Исследование влажных препаратов фекалий или дуоденального содержимого также является первоначальным этапом в установлении диагноза кишечных паразитарных инфекций, таких как амебиаз и криптоспоридиоз. Более того, это исследование играет важную роль в диагностике гельминтозных инвазий кишечника, включая аскаридоз, трихоцефалез, стронгилоидоз и анкилостомоз. Наконец, на основании обнаружения характерных движений микрофилярий и трепонем в крови и других тканевых жидкостях могут быть распознаны филяриатоз и сонная болезнь.
Микроскопия окрашенных препаратов. Несмотря на множество технических достижений в области микробиологии, окраска по Граму остается после 90 лет ее применения наилучшим и единственным широкодоступным методом быстрой диагностики бактериальных инфекций. Она используется при исследовании фактически всех видов клинических материалов, причем наибольшую ценность эта окраска имеет при исследовании экссудатов, аспиратов и тканевых жидкостей, включая церебральную жидкость и мочу. Препараты, окрашенные по Граму, сначала исследуют при малом увеличении микроскопа для выявления окрашенных в розовый цвет воспалительных клеток. Наличие единичных таких клеток в присутствии большого количества клеток плоского эпителия позволяет предположить, что материал был загрязнен во время сбора и может недостаточно объективно отражать состояние воспалительного процесса. Затем препарат исследуется с использованием масляной иммерсии; бактерии выявляются либо как темно-синие (грамположительные), либо как розовые (грамотрицательные) тела. Их окраска и морфологические особенности часто позволяют производить предварительную идентификацию рода, а иногда и вида микроорганизма. Выявление пневмококков в мокроте, Enterobacteriaceae в моче, стафилококков в содержимом локализованных абсцессов, гонококков в отделяемом мочеиспускательного канала, клостридий в зловонных выделениях и пневмококков, менингококков или Haemophilus influenzae в окрашенных мазках цереброспинальной жидкости позволяет начать специфическую химиотерапию с уверенностью, что подобран адекватный режим. У некоторых больных с иммуносупрессией в мазках крови можно обнаружить бластоконидии и псевдогифы Candida за несколько дней до того, как кандидемия может быть установлена методом посева.
Целый ряд специфических микроорганизмов может быть выявлен при окрашивании другими методами. Так, окрашенные основным карболовым фуксином или одним из флюорохромов микобактерии обладают уникальной способностью противостоять обесцвечиванию растворами сильных минеральных кислот и алкоголем. Благодаря этому они немедленно распознаются в тканях и жидкостях организма. Присутствие в выделяемой больным мокроте большого количества кислотоустойчивых бактерий позволяет установить предположительный диагноз туберкулеза органов дыхания и является важным основанием для начала систематических культуральных исследований всего доступного материала от больного, а также для назначения ему противотуберкулезных средств. Последующее систематическое исследование мокроты на кислотоустойчивые микобактерии является важным составным элементом мониторинга по оценке эффективности лечения. В настоящее время традиционные методы окраски по Цилю — Нильсену и Kinyoun вытеснены окраской флюорохромами, которая позволяет гораздо быстрее исследовать мазки, применяя относительно небольшое увеличение.
Окраску на кислотоустойчивые бактерии можно применять также для идентификации микроорганизмов рода Cryptosporidium в фекалиях больных диареей. Обесцвечивание окрашенных мазков минеральными кислотами позволяет выявлять в тканевых жидкостях и экссудатах патогенные штаммы Nocardia. В случае использования для обесцвечивания более слабых агентов, например органических кислот, могут быть обнаружены микроорганизмы рода Actinomyces.
Окраска по Гимзе и йодом может быть использована для диагностики вызванных хламидиями инфекций глаз, мочеиспускательного канала или шейки матки. В окрашенных по Гимзе мазках из соскобов с пораженных участков этих органов выявляются эпителиальные клетки с типичными полулунными плотными включениями, состоящими из многочисленных голубых или фиолетовых частиц, примыкающих к ядру клетки. При окраске йодом в соскобах с пораженных участков глаз выявляются аналогичные красновато-коричневые массы, однако для исследования материала из канала шейки матки эта окраска неэффективна.
Существует множество методов окраски, пригодных для идентификации паразитов. Так, Pneumocystis carinii может быть идентифицирована в материалах трансбронхиальной щелочной биопсии с помощью модифицированной окраски Wright, толуидиновым синим или метенаминовым серебром. Последний метод позволяет выявить очень характерные окрашенные в черный цвет цисты Простейшие микроорганизмы, паразитирующие в крови и тканях, такие как плазмодии малярии и лейшмании, лучше всего выявляются при окраске смесью типа Романовского, содержащей метиленовый синий и эозин. При этой окраске ядра приобретают красно-фиолетовый цвет, а цитоплазма — голубой. С другой стороны, при идентификации кишечных простейших необходимо применять такие краски, как железистый гематоксилин или хром, которые позволяют выявлять таксономически важные детали строения ядра.
Иммунная микроскопия. В этом методе сочетаются специфичность иммунологических исследований со скоростью прямой микроскопии. При использовании иммунофлюоресцентной техники мазки, предположительно содержащие вирусные, бактериальные, грибковые или паразитарные микроорганизмы, окрашиваются с помощью препаратов, содержащих специфические антитела, меченные флюоресцентными красителями, и исследуются в люминесцентном микроскопе. Наиболее эффективно применение этого метода при исследовании ткани мозга на наличие вируса простого герпеса или оспы; ткани легких, плевральной жидкости или мокроты на наличие легионелл; соскобов с шейки матки, уретры или конъюнктивы на наличие характерных для трахомы включений. Прямая флюоресцентная окраска мазков-отпечатков с эпителия полости носа может использоваться для быстрой диагностики вирусного гриппа, парагриппа и инфекций, вызываемых респираторно-синцитиальным вирусом. Метод прямой иммунофлюоресценции для выявления покрытых антителами бактерий в осадке мочи оказался эффективным для дифференциальнои диагностики инфекции в почках и в мочевом пузыре у женщин.
Точность и достоверность метода иммунбфлюоресценции продолжает улучшаться в связи с тем, что устаревшие поликлональные сыворотки заменены более специфичными моноклональными реагентами. Однако необходимость иметь в наличии дорогие люминесцентные микроскопы; недостаток многих дорогих коммерческих конъюгированных антисывороток, потребность в высококвалифицированных специалистах ограничивают применение этих методов рамками референс лабораторий.
Ферментносвязанные иммуносорбентные тесты (ELISA) аналогичны иммунофлюоресцентным, за исключением того что антисыворотка реагирует с меченным ферментом антивидовым конъюгатом. После обработки соответствующим субстратом появляется изменение окраски, улавливаемое под обычным световым микроскопом, а связи с чем отпадает необходимость в дорогостоящем оборудовании.
Электронная микроскопия. Электронно-микроскопическое исследование используется для идентификации определенных вирусов, не обладающих цитонатическим эффектом в культуре клеток. Оно .особенно ценно для выявления ротавирусов в фекалиях младенцев и детей раннего возраста, страдающих гастроэнтеритом. Большое количество и характерная морфология этих вирусных частиц позволяют провести их специфическую идентификацию на основании одних морфологических признаков. Электронная микроскопия может быть использована также для диагностики так называемой болезни зимней рвоты, вызываемой микроорганизмами родов Norwalk и Hawaii. Возбудители морфологически аналогичны представителям группы пикорнавирусов, а для специфической иден тификации их необходима агрегация вирусных частиц иммунной сывороткой. Этот метод иммунной электронной микроскопии может получить широкое применение в вирусологии и используется для идентификации вирусоподобных микроорганизмов, выявляемых у экспериментальных животных при гепатитах, не относящихся к группам А и В.
Выявление микробных антигенов, побочных продуктов и геномов. В связи с относительной неспецифичностью многих прямых микроскопических методов и длительным промежутком времени, необходимым для получения результатов посева, применяется ряд технических приемов, направленных на быстрое выявление микробных антигенов, побочных, продуктов и геномов.
Встречный иммуноэлектрофорез. Встречный иммуноэлектрофорез (ВИЭФ) — наиболее широко применяемый метод выявления антигена. В этом варианте диффузии в агаровом геле материал, исследуемый на наличие антигена, помещается в канавку (лунку), сделанную в агаре, а специфическая антисыворотка— в другую (близлежащую) канавку. Затем через агар пропускается электрический ток, в результате чего происходит быстрое, в течение нескольких минут сближение антигена и антитела и слияние их с образованием преципитата. Доказано, что ВИЭФ является наиболее эффективным методом быстрой диагностики бактериальных менингитов у детей, когда цереброспинальная жидкость исследуется на наличие антигенов пневмококка, менингококка, стрептококка группы В или Н. influenzae. Метод обладает такой же чувствительностью, как окраска по Граму, но является более специфичным. ВИЭФ применяется также для выявления вышеупомянутых бактериальных антигенов в сыворотке крови, пневмококковых капсульных антигенов в мокроте, ротавирусов и энтеровирусов в фекалиях.
Реакция агглютинации частиц. Эти тесты используются в тех же целях, что и ВИЭФ, однако требуют для своего выполнения меньшего технического мастерства. Хотя реакция агглютинации частиц характеризуется большей чувствительностью, как в латекс, так и в коагглютннационной реакциях могут иметь место ложноположительные результаты, обусловленные термолабильными компонентами сыворотки и ревматоидным фактором. По всей вероятности, наиболее эффективны эти реакции для выявления бактериальных антигенов в моче и цереброспинальной жидкости детей с острым менингитом и выявления криптококкового антигена в крови и цереброспинальной жидкости больных хроническим менингоэнцефалитом.
Реакции агглютинации частиц были использованы для выявления пневмококков в мокроте, стрептококков группы А в мазках из зева, антигена Candida в сыворотке крови, ротавирусов и энтеротоксина С. difficile в фекалиях. Однако роль этих тестов в диагностике нуждается в уточнении.
Радиоиммунологическое исследование (RIA). Этот метод наиболее эффективен для обнаружения поверхностно-связанного антигена гепатита В (HBsAg) и профилактики инфекций такого рода с помощью скрининговых исследований крови и ее продуктов на присутствие антигена. Эта процедура высокочувствительна и при применении доступных коммерческих тест-наборов результаты могут быть получены в течение нескольких часов. В этом методе HBsAg, меченный 125I, конкурирует с антигеном в тест-сыворотке за специфические антитела в тест-смеси. Свободные и связанные антитела разделяются отмыванием. Затем с помощью гамма-счетчика анализируется реактивность комплекса антиген — антитело. Для обнаружения циркулирующих антигенов при диссеминированных грибковых инфекциях был разработан экспериментальный метод радиоиммунологического исследования.
Иммуноферментные исследования. Этот метод, описанный выше в разделе «Прямое микроскопическое исследование», может применяться для визуального или спектрофотометрического выявления микробных антигенов. Более того, этот метод начинает применяться вместо радиоиммунологических исследований в диагностике гепатитов А и В и широко используется для обнаружения ротавирусов в фекалиях младенцев при диарее. Он с успехом применялся для выявления циркулирующих антигенов при кандидозс, аспергиллезе и токсоплазмозе. Иммуноферментное исследование может сыграть в будущем важную роль в диагностике С. trachomatis, а также цервицитов и уретритов гонококковой этиологии.
Скрининговое исследование мочи. В распоряжении исследователя имеется большое число немикросконических коммерческих тестов, позволяющих проводить скрининг бактериурии. Каждый из них преследует цели сокращения времени и снижения стоимости исследований, направленных на диагностику инфекций мочевого тракта. Для определения наличия или отсутствия в пробе мочи бактериальных и/или лейкоцитарных ферментов применяются биолюминесценция, фильтрация-колориметрия или химические реакции. Указанные тесты могут быть выполнены лицами, имеющими минимальную техническую квалификацию, и требуют для выполнения всего несколько минут. Обычно пробы мочи, которые дают положительные результаты при скрининге, подвергаются затем культуральному исследованию; те пробы, которые дают отрицательный результат, выбрасываются, а отрицательный результат сообщается как таковой. Чувствительность, специфичность и воспроизводимость этих тестов практически не отличаются от таковых, получаемых опытным микробиологом при микроскопическом исследовании окрашенных мазков мочи. Все достоверно отобранные как положительные при скрининге пробы содержат 105 и более колониеобразующих единиц (КОЕ) в 1 мл мочи, однако при меньшей величине КОЕ скрининговые методы не чувствительны. Значи+ельно более высокая стоимость скрининговых тестов по сравнению с микроскопическим исследованием частично возмещается их технической простотой. Окончательная роль скрининговых тестов в выявлении бактериурии остается неопределенной.
ДНК-пробы. Использование рекомбинантных ДНК-методов сделало возможным выделение, репродукцию и маркировку микроорганизмов со строго определенным уникальным расположением нуклеотида из генома специфических микроорганизмов, представляющих штамм, вид, род или группу. Эти меченные фрагменты ДНК могут быть добавлены к тканевым жидкостям, экссудатам или тканям, предположительно содержащим патогенный агент. Из смеси, обработанной нагреванием или химикалиями, выделяется микробная ДНК соответствующего уникального состава. После обработки фрагменты ДНК нагреваются повторно. Эта реассоциация, или гибридизация, высокоспецифична и происходит только между фрагментами, несущими взаимодополняющие друг друга нуклеотиды. Если материал содержит нуклеотид, последовательно дополняющий те, которые находятся в пробе, они будут гибридизированы и маркированы.
Потенциальное преимущество таких проб состоит в их уникальной специфичности, способности выявлять единственный патоген среди множества других и идентифицировать микроорганизмы, которые либо сложно, либо невозможно выявить культуральными методами. Наиболее благоприятным приложением для этих методов является диагностика вирусных, хламидийных, микобактериальных, энтеробактериальных и паразитарных инфекций. ДНК-пробы уже разработаны для самых разнообразных микроорганизмов, включая вирус I и II простого герпеса, цитомегаловирус, энтеровирусы, вирус Эпстайна — Барра, вирус гепатитаВ, аденовирус, вирус опоясывающего лишая, ротавирус, вирус Т-клеточного лейкоза человека, энтеротоксигенные штаммы кишечной палочки Yersinia enterocolitica, сальмонеллы, шигеллы, кампилобактер, микобактерии, Leishmania mexicana, L. braziliensis, Plasmodium falciparum. В настоящее время только пробы с кишечной палочкой подвергаются широкомасштабным клиническим испытаниям.
В конечном счете широта применения ДНК-проб в клинической медицине зависит от упрощения и степени коммерциализации процедуры гибридизации, а также развития практичных, высокочувствительных маркеров. В настоящий момент в большинстве проб используются радиоизотопные маркеры (обычно 32Р). Эти вещества характеризуются высоким уровнем чувствительности, но требуют продолжительной обработки для ауторадиографического выявления, имеют чрезвычайно ограниченный срок хранения, требуют соблюдения специальных условий хранения и удаления радиоактивных отходов, что практически исключает их применение в клинических лабораториях. Разработка колориметрически выявляемых ферментных маркеров позволила преодолеть эти отрицательные моменты, однако оказалось, что все предложенные в настоящее время маркеры несколько менее чувствительны, чем радиометрические, и бесспорно менее чувствительны, чем большинство культуральных методов. С развитием более пригодных нерадиометрических маркеров ДНК-проба сможет в значительной степени изменить практиче ские и фундаментальные аспекты диагностики и лечения инфекционных болезней. Однако маловероятно, что она заменит культуральные методы исследования при инфекциях, в которых выделение, характеристика и определение лекарственной чувствительности патогенного агента являются решающим указанием для соответствующего лечения больного.
Газовая хроматография. Этот метод заключается в прямом исследовании клинических материалов с помощью газожидкостной хроматографии с целью выявления характерных продуктов метаболизма микроорганизмов.
Метод эффективен при дифференциации аэробных и анаэробных микроорганизмов в гное и крови. Он применяется также для дифференциации артритов стафилококковой, стрептококковой и гонококковой этиологии от травматических и для выявления дрожжеподобных грибов рода Candida в крови больных с гематогенной грибковой инфекцией. Хотя роль газовой хроматографии в идентификации анаэробных бактерий считается установленной, целесообразность ее использования при прямом исследовании клинического материала нуждается в уточнении.
Культуральное исследование. Несмотря на сложность выполнения и необходимость определенного периода времени для получения результата, выделение этиологического агента с помощью культивирования на искусственных питательных средах, в культурах ткани или в экспериментах на животных является обычно наиболее достоверным методом.
Однако диагностическая ценность исследуемого методом посева материала в большой степени зависит от того, не был ли он загрязнен при сборе сопутствующей микробной флорой и был ли доставлен в лабораторию с соблюдением условий, гарантирующих выживание привередливых микроорганизмов.
Сбор материала. В тех случаях, когда получение материала для исследования осуществляется из закрытых глубоких очагов, участок кожных покровов, в котором производится чрескожная аспирация материала иглой, необходимо обрабатывать вначале 70% изопропиловым или этиловым спиртом, а затем продезинфицировать 2% настойкой йода или йодофором. Йодной настойкой обрабатывается кожа в месте предполагаемого прокола, причем вначале она наносится в точку, из которой будет производиться аспирация, а затем концентрическими движениями — вокруг этой точки. Дезинфицирующий агент должен действовать в течение 1—2 мин до аспирации. Все манипуляции следует проводить руками в стерильных перчатках или продезинфицированными руками. Если первая попытка получения материала оказывается неудачной, повторные попытки следует производить, используя новые иглы, и вводить их через вновь продезинфицированный участок. По завершении процедуры йод следует удалить с помощью спирта во избежание аллергической реакции. Если материал для посева забирается из постоянно функционирующей канюли, место забора материала должно дезинфицироваться аналогичным образом.
Когда материал необходимо получить из матки, дренируемой раны или синуса, выходное отверстие должно быть тщательно очищено и продезинфицировано, как описано выше, затем стерильный внутривенный катетер или трубку с множественными отверстиями следует ввести как можно глубже и стерильным шприцем отсосать через нее материал, подлежащий исследованию. Из открытых очагов материал для посева может быть получен с помощью биопсии, аспирации с края очага или путем забора тампоном с поверхности его. В двух первых случаях рана должна быть обработана так же, как при заборе материала из глубоких закрытых очагов. Для забора материала тампоном поверхность открытого раневого очага обрабатывается только стерильным физиологическим раствором для удаления раневого детрита и сапрофитной флоры.
Транспортировка. Все материалы, подлежащие микробиологическому исследованию методом посева, должны быть доставлены в лабораторию как можно быстрее, желательно в течение 1 ч. Отсрочка доставки свыше указанного времени может привести к гибели привередливых микроорганизмов, ускоренному размножению сопутствующей загрязняющей флоры и/или изменению количества присутствующих в материале бактерий, если не будут приняты специальные меры, направленные на преодоление этих нежелательных процессов. Особенно важна быстрая транспортировка при исследовании крови, тканевых жидкостей и экссудатов, в которых могут находиться патогенные микроорганизмы рода
Neisseria или анаэробы. Контейнер для материала должен быть чистым, стерильным (за исключением посуды для фекалий) и соответствующим образом маркированным. Секреты органов дыхания, моча, большие куски тканей и большие объемы жидкостей могут безопасно транспортироваться в пластиковых контейнерах с герметическими крышками. Аспираты удобно и безопасно транспортировать в том же самом шприце, с помощью которого осуществлялся их забор, при условии, что весь воздух удален из шприца, и игла защищена стерильным колпачком. Анаэробные микроорганизмы следует транспортировать в сосуде, из которого удален воздух. При этом важно убедиться, что находящийся в них индикатор остается бесцветным. Розовый или голубой цвет указывает на присутствие кислорода и позволяет предположить, что сосуд больше не пригоден для транспортировки материала, подлежащего исследованию на присутствие анаэробной микрофлоры. Небольшие кусочки тканей (размером менее 1 см2) лучше всего транспортировать в стерильной пробирке с резиновой пробкой, из которой удален газ. После того как проверено состояние индикатора, пробирку устанавливают в вертикальное положение, чтобы свести до минимума потерю тяжелого инертного газа, снимают пробку, помещают материал и пробирку вновь закрывают.
Мазки, подлежащие культуральному исследованию на р-гемолитические стрептококки группы А, могут транспортироваться в сухой стерильной пробирке. Все другие мазки следует помещать в любую из имеющихся в распоряжении коммерческих транспортных сред. Эти среды предотвращают как высыхание микро- организмов, находящихся на тампоне, так и ускоренное размножение неприхотливых микроорганизмов за счет подавления более привередливых. Хотя для транспортировки материалов, подлежащих исследованию на присутствие анаэробной микрофлоры, имеются специальные транспортные контейнеры, использование мазков для выделения таких микроорганизмов нежелательно.
Культуральное исследование материала. Материал из верхних отделов дыхательного тракта. В связи с тем, что гортань и носоглотка в норме сильно загрязнены сапрофитными и потенциально патогенными бактериями, культуральное исследование микрофлоры этих органов применяется редко, за исключением тех случаев, когда подразумевается присутствие определенных патогенных бактерий, а именно Streptococcus pyogenes, Bordetella pertussis, Corynebacterium diphtheriae, менингококков или гонококков.
Посевы из гортани. В тех случаях, когда материал из гортани посылается на культуральное исследование в лабораторию без специального указания о возможном подозреваемом возбудителе, лаборатория сообщает только о наличии или отсутствии в материале S. pyogenes. В связи с тем, что у 90% больных стрептококковым фарингитом возбудитель выявляется- при исследовании однократно взятого мазка слизи из гортани, отрицательный результат такого исследования является весьма обнадеживающим с точки зрения исключения возможности такого заболевания. Подобным же образом обильный или преобладающий рост b-гемолитического стрептококка группы А из материала от больных с признаками и симптомами стрептококкового фарингита является важным показателем наличия у больного антительного ответа на стрептококковые антигены и предположительно наличия заболевания. Значительно труднее интерпретировать результаты посевов, дающих скудный или умеренно выраженный рост S. pyogenes. У большого числа таких больных иммунологические показатели обычно не повышены, и это позволяет предположить, что бактериальный рост отражает состояние носительства.
Посевы из гортани могут не давать положительных результатов у взрослых лиц, жалующихся на боли в горле, если у них не повышена температура тела, нет признаков шейной лимфаденопатии или в недавнем прошлом они не контактировали с другим больным стрептококковым фарингитом, так как положительные результаты посева отмечают менее чем у 5% таких больных. В то же время, если температура тела повышается до 38°С н выше, шейные лимфатические узлы болезненны и горло отечно, результаты посева настолько часто бывают положительными, что во избежание потери времени на их ожидание более рационально немедленно начинать антибактериальную терапию.
Посевы из ротовой полости. В посевах из ротовой полости обычно выявляется массивный рост смешанной флоры, состоящей из аэробных и анаэробных бактерий. Их выделение не имеет никакого клинического значения, за исключением тех случаев, когда предпринимаются специальные меры для предотвращения загрязнения вегетирующей микрофлоры. Это особенно важно для выделения Actinomyces israelii. Этот микроорганизм — представитель нормальной орофарингеальной флоры, и усилия, предпринимаемые для его выделения, не оправдываются до тех пор, пока не удастся получить незагрязненный материал.
Материал из нижних отделов дыхательного пути. Хотя культуральное исследование мокроты является методом, наиболее часто используемым в диагностике инфекций нижних отделов дыхательного пути, как чувствительность, так и специфичность этого метода остаются окончательно неустановленными. Обследование больных с бактериемической пневмококковой пневмонией показало, что этиологический агент обнаруживался в мокроте только 50—94% этих больных. Более того, выделяемая больными мокрота почти всегда загрязнена орофарингеальной флорой, включая во многих случаях бактериальные виды, которые обычно связывают с легочными инфекциями. Даже в тех случаях, когда выделяется потенциально патогенный микроорганизм, его роль в этиологии инфекции нижних отделов дыхательных путей остается неопределенной. Попытки отделить слюну и носовой секрет от мокроты путем повторного промывания или дифференцировать микроорганизмы, происходящие из верхних и нижних отделов дыхательных путей, с помощью количественного посева мокроты оказались неэффективными или технически трудоемкими. Некоторых ошибок можно избежать, если строго соблюдать правила сбора мокроты и перед посевом на питательные среды производить макро- и микроскопическую ее оценку. Мокроту следует собирать рано утром под непосредственным наблюдением врача. Если больной не может самостоятельно выделить мокроту, можно стимулировать кашель, опустить на несколько минут головной конец его постели или назначить ингаляции теплого гипертонического раствора соли. Так как мокрота редко бывает гомогенной, ее необходимо тщательно исследовать на наличие примеси гноя или крови. Комочки гноя затем необходимо использовать для приготовления мазков и окрасить их по Граму. Мазки исследуют под малым увеличением микроскопа (объектив х10) на присутствие клеток плоского эпителия и лейкоцитов. Если в одном поле зрения микроскопа обнаруживается менее 10 клеток плоского эпителия и более 25 лейкоцитов, можно полагать, что результаты посева будут отражать истинную флору нижних отделов дыхательных путей. Это особенно справедливо, если при посеве выявляют преобладание какого-либо одного вида бактерий. В случае же хронических обструктивных заболеваний легких обычно выделяется пневмококк в сочетании с палочкой инфлюэнцы. Если же при малом увеличении микроскопа в поле зрения обнаруживается более 10 клеток плоского эпителия, то материал считается массивно загрязненным орофарингеальной флорой и подлежит удалению. В большинстве случаев только вторая тщательно собранная порция мокроты отвечает необходимым требованиям.
В случаях, когда не удается получить мокроту, можно использовать прямую эндотрахеальную и эндобронхиальную аспирацию. Однако этот материал подвергается загрязнению орофарингеальной флорой во время прохождения инструмента, используемого для аспирации, через верхние дыхательные пути. Фиброоптическая бронхоскопия, дающая возможность прямого визуального наблюдения и аспирации бронхиального секрета, является относительно безопасной процедурой и позволяет получить материал лучшего качества. В тех случаях, когда она сопровождается щеточной биопсией, осуществляемой через закрытую двухпросветную трубку, получаемый материал вряд ли загрязнен слюной или применяемыми для местной анестезии препаратами, что позволяет использовать его для исследования на наличие анаэробной микрофлоры. С другой стороны, материал для посева может быть получен с помощью методов, полностью исключающих прохождение его через ротоглотку. С этой целью наиболее широко используется транстрахеальная аспирация. Этот метод влечет за собой определенный риск развития кровохарканья, подкожной и медиастинальной эмфиземы, поражения блуждающего нерва или дыхательных нарушений и противопоказан при наличии геморрагического диатеза. Его следует применять только в тех случаях, когда результаты исследования мокроты неудовлетворительные, а тяжесть инфекции оправдывает риск. Указанный метод позволяет получить более полноценный и достоверный материал, чем при самопроизвольном выделении мокроты и, по всей вероятности, является единственным удовлетворительным методом получения материала для посева на анаэробную флору. Однако около 20% материалов, полученных от больных без клинических проявлений пневмонии, содержат потенциально патогенные микроорганизмы, и прежде всего поступают от больных с хроническими болезнями легких, от лиц, у которых в недавнем прошлом произошла микроаспирация, или от тех, у кого во время получения материала катетер коснулся стенки глотки.
Качественный материал для исследования можно получить из легочных инфильтратов с помощью осуществляемой под флюороскопическим контролем аспирации иглой. Чрескожпый метод дает высокодостоверные и точные результаты, однако при его применении в 5% случаев развиваются осложнения, особенно пневмоторакс. При применении этого метода риск развития осложнений больше, чем при транстрахеальной аспирационной биопсии, но диагностическая ценность его выше.
Независимо от того, какие методы применяются для получения материала из нижних дыхательных путей, во всех случаях необходимо производить посев крови. При наличии плеврального выпота его также следует аспирировать и подвергнуть культуральному исследованию.
Кроме патогенных бактерий, пневмония может быть вызвана вирусами, риккетсиями, хламидиями, Mycoplazma pneumoniae, Legionella и другими агентами. Рутинные лаборатории обычно не владеют методиками выделения этих микроорганизмов из мокроты, и диагностика наиболее часто осуществляется на основании клинических и серологических показателей. L. pneumophila может быть выделена из мокроты, ткани легкого или содержимого эмпиемы при культуральном исследовании. Кроме того, она может быть обнаружена в перечисленных материалах и в транстрахеальных аспиратах с помощью прямой флюоресцентной окраски на антитела. Это позволяет своевременно поставить диагноз и назначить соответствующее лечение. Методические приемы выявления микобактерий и грибов в нижних отделах дыхательного пути будут обсуждены в специальных главах, посвященных этим микроорганизмам.
Посевы мочи. Выделяемая при мочеиспускании моча, как и отхаркиваемая мокрота, обычно загрязнена нормальной микробной флорой, в данном случае вегетирующей в мочеиспускательном канале и наружных половых органах. Однако посевы мочи дают более достоверные результаты, чем посевы самопроизвольно выделяемой мокроты, потому что периуретральные участки можно продезинфицировать, а сама уретра, прежде чем производится забор мочи для исследования, промывается первыми порциями ее в начале мочеиспускания. К тому же количественный учет бактериального роста оказывает помощь в дифференциации истинной инфекции от загрязнения. Вообще количество бактерий, превышающее 100000 в 1 мл мочи, указывает на истинную бактериурию, тогда как менее 1000 микроорганизмов в 1 мл отражает загрязнение исследуемой порции мочи флорой, вегетирующей в области промежности или в мочеиспускательном канале. Однако прежде чем будут получены данные, подтверждающие наличие инфекции, необходимо обратить внимание на следующие факторы: адекватность дезинфекционных процедур; пол больного; интервал времени между сбором материала и его посевом; количество выделенных бактериальных видов. Больной должен быть тщательно проинструктирован в отношении техники получения чистой порции мочи, либо забор ее должен осуществляться под присмотром опытного с