Тема: Введение в биохимию. Ферменты: строение, свойства, локализация, номенклатура и классификация
Кафедра биохимии
КУРС ЛЕКЦИЙ
ПО ОБЩЕЙ БИОХИМИИ
для студентов 2 курса
лечебно-профилактического
факультета
Модуль 1. Ферменты
Автор: к.б.н., доцент кафедры биохимии Гаврилов И.В.
Екатеринбург,
2013г
ЛЕКЦИЯ № 1
Тема: Введение в биохимию. Ферменты: строение, свойства, локализация, номенклатура и классификация
Биохимия – наука, изучающая вещества, входящие в состав живых организмов, их превращения, а также взаимосвязь этих превращений с деятельностью органов и тканей.
Биохимия – наука, о химических основах процессов жизнедеятельности.
Биохимия - молодая наука, около ста лет назад она возникла на стыке физиологии и органической химии. Термин биохимия ввел в 1903г молодой немецкий биохимик Карл Нейберг (1877-1956).
Современная биохимия как наука делится на:
1) статическую (анализирует структуру и химический состав организмов);
2) динамическую (изучает обмен веществ и энергии в организме);
3) функциональную (исследует взаимодействие химических процессов с биологическими и физиологическими функциями).
По объектам исследования, биохимия делиться на:
1) биохимию человека и животных;
2) биохимию растений;
3) биохимию микроорганизмов;
4) вирусов.
Мы с вами будем заниматься медицинской биохимией, одним из разделов биохимии человека и животных.
Предметом медицинской биохимии является человек.
Цельюкурса медицинской биохимии является изучение:
1) молекулярных основ физиологических функций человека;
2) молекулярных механизмов патогенеза болезней;
3) биохимических основ предупреждения и лечения болезней;
4) биохимических методов диагностики болезней и контроля эффективности лечения.
Задачи курса медицинской биохимии:
1) изучить теоретический материал;
2) получить практический навык биохимических исследований;
3) научиться интерпретировать результаты биохимических исследований.
Медицинская биохимия связана со всеми фундаментальными и клиническими медицинскими дисциплинами. Патогенез любой патологии включает в себя нарушение нормальных биохимических процессов, лежащих в основе физиологических функций организма, а излечение патологии – нормализация нарушенных биохимических процессов и физиологических функций организма. Поэтому, биохимия является фундаментальной наукой для врача.
Ферменты. Химическая природа, физико-химические свойства и биологическая роль.
Основу жизнедеятельности любого организма составляют химические процессы. Практически все реакции в живом организме протекают с участием природных биокатализаторов, называемых ферментами или энзимами.
Ферменты - это белки (установлено в 1922г), которые действуют как катализаторы в биологических системах.
Являясь веществами белкой природы, ферменты обладают всеми свойствами белков:
1. являются амфотерными соединениями;
2. вступают в те же качественные реакции, что и белки (биуретовую, ксантопротеиновую, фолина и др.);
3. подобно белкам растворяются в воде с образованием коллоидных растворов;
4. обладают электрофоретической активностью;
5. гидролизуются до аминокислот;
6. склонны к денатурации под влиянием тех же факторов: температуры, изменениях рН, действием солей тяжелых металлов, действием физических факторов (ультразвук, ионизирующее излучение и др.);
7. имеют несколько уровней организации макромолекул, что подтверждено данными рентгеноструктурного анализа, ЯМР, ЭПР.
Биологическая роль ферментов заключается в том, что они катализируют контролируемое протекание всех метаболических процессов в организме.
Строение ферментов
Метаболит - вещество, которое участвует в метаболических процессах.
Субстрат –вещество, которое вступает в химическую реакцию.
Продукт –вещество, которое образуется в ходе химической реакции.
Ферменты характеризуются наличием специфических центров катализа.
Активный центр (Ац) – это часть молекулы фермента, которая специфически взаимодействует с субстратом и принимает непосредственное участие в катализе. Ац, как правило, находиться в нише (кармане). В Ац можно выделить два участка: участок связывания субстрата – субстратный участок (контактная площадка) и собственно каталитический центр.
Большинство субстратов образует, по меньшей мере, три связи с ферментом, благодаря чему молекула субстрата присоединяется к активному центру единственно возможным способом, что обеспечивает субстратную специфичность фермента. Каталитический центр обеспечивает выбор пути химического превращения и каталитическую специфичность фермента.
У группы регуляторных ферментов есть аллостерические центры, которые находятся за пределами активного центра. К аллостерическому центру могут присоединяться “+” или “–“ модуляторы, регулирующие активность ферментов.
Различают ферменты простые, состоят только из аминокислот, и сложные, включают также низкомолекулярные органические соединения небелковой природы (коферменты) и (или) ионы металлов (кофакторы).
Коферменты – это органические вещества небелковой природы, принимающие участие в катализе в составе каталитического участка активного центра. В этом случае белковую составляющую называют апоферментом, а каталитически активную форму сложного белка – холоферментом. Таким образом: холофермент = апофермент + кофермент.
В качестве коферментов функционируют:
· гемы,
· нуклеотиды,
· коэнзим Q,
· ФАФС,
· SAM,
· Глутатион
· производные водорастворимых витаминов:
Витамины | Коферменты |
РР (никотиновая кислота) | НАД+, НАДФ+ |
В2 (рибофлавин) | ФАД, ФМН |
В6 (пиридоксаль) | Пиридоксальфосфат |
В1 (тиамин) | Тиаминпирофосфат |
В12 | Кобаламины |
Кофермент, который присоединен к белковой части ковалентными связями называется простетической группой. Это, например, FAD, FMN, биотин, липоевая кислота. Простетическая группа не отделяется от белковой части. Кофермент, который присоединен к белковой части нековалентными связями называется косубстрат. Это, например, НАД+, НАДФ+. Косубстрат присоединяется к ферменту в момент реакции.
Кофакторы ферментов – это ионы металлов, необходимые для проявления каталитической активности многих ферментов. В качестве кофакторов выступают ионы калия, магния, кальция, цинка, меди, железа и т.д. Их роль разнообразна, они стабилизируют молекулы субстрата, активный центр фермента, его третичную и четвертичную структуру, обеспечивают связывание субстрата и катализ. Например, АТФ присоединяется к киназам только вместе с Mg2+.
Изоферменты – это множественные формы одного фермента, катализирующие одну и ту же реакцию, но отличающие по физическим и химическим свойствам (сродству к субстрату, максимальной скорости катализируемой реакции, электрофоретической подвижности, разной чувствительности к ингибиторам и активаторам, оптимуму рН и термостабильности). Изоферменты имеют четвертичную структуру, которая образована четным количеством субъединиц (2, 4, 6 и т.д.). Изоформы фермента образуются в результате различных комбинаций субъединиц.
В качестве примера можно рассмотреть лактатдегидрогеназу (ЛДГ), фермент, который катализирует обратимую реакцию:
НАДН2 НАД+
пируват ←ЛДГ→ лактат
ЛДГ существует в виде 5 изоформ, каждая из которых состоит из 4-х протомеров (субъединиц) 2 типов М (muscle) и Н (heart). Синтез протомеров М и Н типа кодируется двумя разными генетическими локусами. Изоферменты ЛДГ различаются на уровне четвертичной структуры: ЛДГ1 (НННН), ЛДГ2 (НННМ), ЛДГ3 (ННММ), ЛДГ4 (НМММ), ЛДГ5 (ММММ).
Полипептидные цепи Н и М типа имеют одинаковую молекулярную массу, но в составе первых преобладают карбоновые аминокислоты, последних – диаминокислоты, поэтому они несут разный заряд и могут быть разделены методом электрофореза.
Кислородный обмен в тканях влияет на изоферментный состав ЛДГ. Где доминирует аэробный обмен, там преобладают ЛДГ1, ЛДГ2 (миокард, надпочечники), где анаэробный обмен - ЛДГ4, ЛДГ5 (скелетная мускулатура, печень). В процессе индивидуального развития организма в тканях происходит изменение содержания кислорода и изоформ ЛДГ. У зародыша преобладают ЛДГ4, ЛДГ5. После рождения в некоторых тканях происходит увеличение содержания ЛДГ1, ЛДГ2.
Существование изоформ повышает адаптационную возможность тканей, органов, организма в целом к меняющимся условиям. По изменению изоферментного состава оценивают метаболическое состояние органов и тканей.
Локализация и компартментализация ферментов в клетке и тканях.
Ферменты по локализации делят на 3 группы:
I – общие ферменты (универсальные)
II - органоспецифические
III - органеллоспецифические
Общие ферменты обнаруживаются практически во всех клетках, обеспечивают жизнедеятельность клетки, катализируя реакции биосинтеза белка и нуклеиновых кислот, образование биомембран и основных клеточных органелл, энергообмен. Общие ферменты разных тканей и органов, тем не менее, отличаются по активности.
Органоспецифичные ферменты свойственны только определенному органу или ткани. Например: Для печени – аргиназа. Для почек и костной ткани – щелочная фосфатаза. Для предстательной железы – КФ (кислая фосфатаза). Для поджелудочной железы – α-амилаза, липаза. Для миокарда – КФК (креатинфосфокиназа), ЛДГ, АсТ и т.д.
Внутри клеток ферменты также распределены неравномерно. Одни ферменты находятся в коллоидно-растворенном состоянии в цитозоле, другие вмонтированы в клеточных органеллах (структурированное состояние).
Органеллоспецифические ферменты. Разным органеллам присущ специфический набор ферментов, который определяет их функции.
Органеллоспецифические ферменты это маркеры внутриклеточных образований, органелл:
1) Клеточная мембрана: ЩФ (щелочная фосфатаза), АЦ (аденилатциклаза), К-Nа-АТФаза
2) Цитоплазма: ферменты гликолиза, пентозного цикла.
3) ЭПР: ферменты обеспечивающие гидроксилирование (микросомальное окисление).
4) Рибосомы: ферменты обеспечивающие синтез белка.
5) Лизосомы: содержат гидролитические ферменты, КФ (кислая фосфатаза).
6) Митохондрии: ферменты окислительного фосфорилирования, ЦТК (цитохромоксидаза, сукцинатдегидрогеназа), β-окисления жирных кислот.
7) Ядро клетки: ферменты обеспечивающие синтез РНК, ДНК ( РНК-полимераза, НАД-синтетаза).
8) Ядрышко: ДНК-зависимая-РНК-полимераза
В результате в клетке образуются отсеки (компартменты), которые отличаются набором ферментов и метаболизмом (компартментализация метаболизма).
Среди ферментов выделяется немногочисленная группа регуляторных ферментов, которые способны отвечать на специфические регуляторные воздействия изменением активности. Эти ферменты имеются во всех органах и тканях и локализуются в начале или в местах разветвления метаболических путей.
Строгая локализация всех ферментов закодирована в генах.
Определение в плазме или сыворотке крови активности органо- органеллоспецифических ферментов широко используется в клинической диагностике.
Оксидоредуктазы
Катализируют окислительно-восстановительные реакции. В реакцию вступают 2 вещества и 2 образуются, одно окисляется, другое восстанавливается: Sвост + S’окисл ↔ S’вост + Sокисл
Оксидоредуктазы делятся на: дегидрогеназы (отщепляют Н от субстратов), оксидазы (переносят Н с субстрата на кислород), оксигеназы (включают кислород в молекулу субстрата), гидроксипероксидазы (разрушают перекиси водорода и органические перекиси).
Систематическое название включает в себя название донора е и Н+ через двоеточие название акцептора через тире – название класса: донор: акцептор ( косубстрат) оксидоредуктаза
R-CH2-OH + НАД+ ↔ R-CH=О + НАДН2
Систематическое название: Алкоголь: НАД+ оксидоредуктаза
Тривиальное название: алкогольдегидрогеназа. Шифр: КФ 1.1.1.1
Пируват + НАДН2 ↔ лактат + НАД+
Систематическое название: Лактат: НАД+ оксидоредуктаза
Тривиальное название: ЛДГ. Шифр: КФ 1.1.2.7
Трансферазы
Ферменты этого класса принимают участие в переносе атомных групп, молекулярных остатков от одного соединения к другому. В реакцию вступают 2 вещества и 2 образуются: S-G + S’ ↔ S + S’-G.
В зависимости от переносимых групп трансферазы делятся на: 1). фосфотрансферазы (киназы); 2). аминотрансферазы; 3). гликозилтрансферазы; 4). метилтрансферазы; 5). ацилтрансферазы.
Систематическое название: откуда: куда в какое положение–что–трансфераза
или донор: акцептор–транспортируемая группа– трансфераза
АТФ + D-гексоза ↔ АДФ + D- гексоза-6ф
Систематическое название: АТФ: D-гексоза-6-фосфотрансфераза
Тривиальное название: гексокиназа
ФЕП + АДФ → ПВК + АТФ
Систематическое название: АТФ: ПВК-2-фосфотрансфераза
Тривиальное название: пируваткиназа
3. Гидролазы.Расщепляют ковалентную связь с присоединением молекулы воды.
В реакцию вступают 2 вещества и 2 образуются: S-G + Н2О ↔ S-ОН + G-Н.
В зависимости от характера гидролизуемой связи, различают подклассы: 1). гликозидазы – гидролиз гликозидов (лактоза – лактаза, мальтоза – мальтаза, сахароза – сахараза); 2). пептидазы – гидролиз пептидных связей; 3). эстеразы – разрыв связи в сложных эфирах.
Систематическое название субстрат–что отщепляется–гидролаза
или субстрат–гидролаза
Ацетилхолин + Н2О ↔ Ацетат + Холин
Систематическое название: Ацетилхолин-ацилгидролаза (Ацетилхолин-гидролаза)
Тривиальное название: Ацетилхолинэстераза
Глюкозо-6ф + Н2О → глюкоза + Н3РО4
Систематическое название: Глюкозо-6ф-фосфогидролаза
Тривиальное название: Глюкозо-6ф-фосфотаза
Лиазы
Отщепление групп от субстратов по негидролитическому механизму с образованием двойных связей (или наоборот, присоединение по двойной связи). Реакции обратимы, за исключением отщепления СО2.
В реакцию вступает 1 вещество и 2 образуются (или наоборот): -SХ-SY- ↔ XY + -S=S-
Систематическое название субстрат: что отщепляется–лиаза
L-малат ↔ фумарат + Н2О
Систематическое название: L-малат: гидро–лиаза
Тривиальное название: фумараза
Изомеразы
Взаимопревращения оптических, геометрических, позиционных изомеров. В реакцию вступает 1 вещество и 1 образуется. Исходя из типа катализируемой реакции изомеризации выделяется несколько подклассов: 1) рацемазы; 2) эпимеразы; 3) таутамеразы; 4) цис,- трансизомеразы; 5) мутазы (при внутримолекулярном переносе группы); 6) цикло-, оксоизомеразы.
Систематическое название субстрат–вид изомеризации–изомераза или субстрат–продукт–изомераза
Фумаровая к-та ↔ малеиновая к-та
Систематическое название: фумарат–цис,транс–изомераза
гл-6ф ↔ фр-6ф
Систематическое название: гл-6ф–фр-6ф–изомераза
Лигазы (синтетазы)
Соединение 2 молекул с использованием энергии макроэргических соединений (АТФ и др). В реакцию вступают 3 вещества, образуется 3 вещества.
Систематическое название субстрат: субстрат–лигаза (источник энергии)
АТФ + L-глутамат + NH4+ → АДФ + Фн + L-глутамин
Систематическое название: L-глутамат: аммиак–лигаза (АТФ → АДФ + Фн)
Тривиальное название: глутаминсинтетаза
АТФ + ПВК + СО2 → АДФ + Фн + ЩУК
Систематическое название: ПВК: СО2–лигаза (АТФ → АДФ + Фн)
Тривиальное название: пируваткарбокилаза
ЛЕКЦИЯ № 2
Клеточная сигнализация
В многоклеточных организмах поддержание гомеостаза обеспечивают 3 системы:
1). нервная, 2). гуморальная, 3). иммунная.
Регуляторные системы функционируют с участием сигнальных молекул.
Сигнальные молекулы – это органические вещества, которые переносят информацию.
К сигнальным молекулам относятся гормоны, нейромедиаторы, факторы роста, цитокины и эйкозаноиды.
ЦНС для передачи сигнала использует нейромедиаторы, гуморальная система – гормоны, иммунная - цитокины.
Гормоны, это сигнальные молекулы беспроводного системного действия.
Отличием истинных гормонов от других сигнальных молекул, является то, что они синтезируются в специализированных эндокринных клетках, транспортируются кровью и действуют дистантно на ткани мишени.
Гормоны по строению делятся: на
белковые (гормоны гипоталамуса, гипофиза),
производные аминокислот (тиреоидные, катехоламины)
и стероидные (половые, кортикоиды).
Пептидные гормоны и катехоламины растворимы в воде, они регулируют преимущественно каталитическую активность ферментов.
Стероидные и тиреоидные гормоны водонерастворимы, они регулируют преимущественно количество ферментов.
Гормоны влияют на активность и количество ферментов в клетке не напрямую, а через каскадные системы (аденилатциклазную, гуанилатциклазную, инозитолтрифосфатную, RAS и т.д.), состоящие из:
1. рецепторов;
2. регуляторных белков (G-белки, IRS, Shc, STAT и т.д.).
3. вторичных посредников, (messenger - посыльный) (Са2+, цАМФ, цГМФ, ДАГ, ИТФ);
4. ферментов (аденилатциклаза, фосфолипаза С, фосфодиэстераза, протеинкиназы А, С, G, фосфопротеинфосфотаза);
Необходимость каскадных систем связана с тем, что, во-первых, водорастворимые гормоны не проходят клеточную мембрану, во-вторых, эти системы обеспечивают усиление первичного сигнала гормонов в миллионы раз. В результате даже одна молекула гормона способна активировать миллионы ферментов и вызвать метаболический эффект.
Водонерастворимые гормоны самостоятельно проходят клеточные мембраны и реализуют свой эффект с участием цитоплазматических и ядерных рецепторов.
Рецепторы
Рецепторы - это белки, встроенные в клеточную мембрану или находящиеся внутри клетки, которые, взаимодействуя с сигнальными молекулами, меняют активность регуляторных белков.
По локализации рецепторы делятся на: 1) цитоплазматические; 2) ядерные; 3) мембранные.
По эффекту рецепторы делятся на: активаторные (активируют каскадные системы) и ингибиторные (блокируют каскадные системы).
Регуляторные белки
G-белки - универсальные посредники, передающие сигнал от рецепторов к ферментам клеточных мембран.
В настоящее время известно более 50 G-белков:
· Gs-белок активирует аденилатциклазу. Масса 80000-90000Да.
· Gi-белок ингибирует аденилатциклазу. Масса 80000-90000Да. Через рецептор, активируется соматостатином.
· Gq-белок активирует фосфолипазу С.
· G-белки влияют на активность фосфодиэстеразы, фосфолипазы А2, некоторые типы Са2+- и K+-каналов.
· G-белки также обеспечивают передачу сигнала в сенсорных клетках (фоторецепторных, обонятельных и вкусовых): Свет → родопсин → Gt → ФДЭцГМФ → (цГМФ→ГМФ)
G-белки олигомеры, состоят из 3 субъединиц α, β, γ.
β-субъединицы (35000 Да) у Gs- и Gi-белков одинаковы.
α- субъединицы (41000 Да у Gi, 45000 Да у Gs) кодируются разными генами и обеспечивают специфический ответ (“+” или “-”).
1). Гормон (Г), взаимодействуя с рецептором (R), изменяет его конформацию. 2). Гормон-рецепторный комплекс, взаимодействуя с G-белком, уменьшает у α-субъединицы (α) сродство к ГДФ и увеличивает сродство к ГТФ. 3). Присоединение ГТФ к α-субъединице (в присутствии Mg2+) вызывает в G-белке изменение конформации и диссоциацию его на субъединицы: α-субъединицу (α-ГТФ) и димер βγ. α-ГТФ имеет высокое сродство к аденилатциклазе (Ац), его присоединение приводит к активации последней. 4). α-субъединица катализирует распад ГТФ до ГДФ + Фн. α-ГДФ имеет низкое сродство к Ац и высокое к димеру βγ. Отделение α-ГДФ от Ац инактивирует последнюю. |
STATбелки.
Ферменты
Ферменты каскадных систем катализируют:
- образование вторичных посредников гормонального сигнала;
- активацию и ингибирование других ферментов;
- превращение субстратов в продукты;
Аденилатциклаза (АЦ)
Гликопротеин с массой от 120 до 150 кДа, имеет 8 изоформ, ключевой фермент аденилатциклазной системы, с Mg2+ катализирует образование вторичного посредника цАМФ из АТФ.
АЦ содержит 2 –SH группы, одна для взаимодействия с G-белком, другая для катализа. АЦ содержит несколько аллостерических центров: для Mg2+, Mn2+, Ca2+, аденозина и форсколина.
Есть во всех клетках, располагается на внутренней стороне клеточной мембраны. Активность АЦ контролируется: 1) внеклеточными регуляторами - гормонами, эйкозаноидами, биогенными аминами через G-белки; 2) внутриклеточным регулятором Са2+ (4 Са2+-зависимые изоформы АЦ активируются Са2+).
Протеинкиназа А (ПК А)
ПК А есть во всех клетках, катализируют реакцию фосфорилирования ОН- групп серина и треонина регуляторных белков и ферментов, участвует в аденилатциклазной системе, стимулируется цАМФ. ПК А состоит из 4 субъединиц: 2 регуляторных R (масса 38000 Да) и 2 каталитических С (масса 49000 Да). Регуляторные субъединицы имеют по 2 участка связывания цАМФ. Тетрамер не обладает каталитической активностью. Присоединение 4 цАМФ к 2 субъединицам R приводит к изменению их конформации и диссоциации тетрамера. При этом высвобождаются 2 активные каталитические субъединицы С, которые катализируют реакцию фосфорилирования регуляторных белков и ферментов, что изменяет их активность.
Протеинкиназа С (ПК С)
ПК С участвует в инозитолтрифосфатной системе, стимулируется Са2+, ДАГ и фосфатидилсерином. Имеет регуляторный и каталитический домен. ПК С катализирует реакцию фосфорилирования белков-ферментов.
Протеинкиназа G (ПК G) есть только в легких, мозжечке, гладких мышцах и тромбоцитах, участвует в гуанилатциклазной системе. ПК G содержит 2 субъединицы, стимулируется цГМФ, катализирует реакцию фосфорилирования белков-ферментов.
Фосфолипаза С (ФЛ С)
Гидролизует фосфоэфирную связь в фосфатидилинозитолах с образованием ДАГ и ИФ3, имеет 10 изоформ. ФЛ С регулируется через G-белки и активируется Са2+.
Фосфодиэстеразы (ФДЭ)
ФДЭ превращает цАМФ и цГМФ в АМФ и ГМФ, инактивируя аденилатциклазную и гуанилатциклазную систему. ФДЭ активируется Са2+, 4Са2+-кальмодулином, цГМФ.
NO-синтаза – это сложный фермент, представляющий собой димер, к каждой из субъединиц которого присоединено несколько кофакторов. NO-синтаза имеет изоформы.
Синтезировать и выделять NO способно большинство клеток организма человека и животных, однако наиболее изучены три клеточные популяции: эндотелий кровеносных сосудов, нейроны и макрофаги. По типу синтезирующей ткани NO-синтаза имеет 3 основные изоформы: нейрональную, макрофагальную и эндотелиальную (обозначаются соответственно как NO-синтаза I, II и III).
Нейрональная и эндотелиальная изоформы NO-синтазы постоянно присутствуют в клетках в небольших количествах, и синтезируют NO в физиологических концентрациях. Их активирует комплекс кальмодулин-4Са2+.
NO-синтаза II в макрофагах в норме отсутствует. При воздействии на макрофаги липополисахаридов микробного происхождения или цитокинов они синтезируют огромное количество NO-синтазы II (в 100-1000 раз больше чем NO-синтазы I и III), которая производит NO в токсических концентрациях. Глюкокортикоиды (гидрокортизон, кортизол), известные своей противовоспалительной активностью, ингибируют экспрессию NO-синтазы в клетках.
Действие NO
NO - низкомолекулярный газ, легко проникает через клеточные мембраны и компоненты межклеточного вещества, обладает высокой реакционной способностью, время его полураспада в среднем не более 5 с, расстояние возможной диффузии небольшое, в среднем 30 мкм.
В физиологических концентрациях NO оказывает мощное сосудорасширяющее действие:
· Эндотелий постоянно продуцирует небольшие количества NO.
· При различных воздействиях – механических (например, при усилении тока или пульсации крови), химических (липополисахариды бактерий, цитокины лимфоцитов и кровяных пластинок и т.д.) – синтез NO в эндотелиальных клетках значительно повышается.
· NO из эндотелия диффундирует к соседним гладкомышечным клеткам стенки сосуда, активирует в них гуанилатциклазу, которая синтезирует через 5с цГМФ.
· цГМФ приводит к снижению уровня ионов кальция в цитозоле клеток и ослаблению связи между миозином и актином, что и позволяет клеткам через 10 с расслабляться.
На этом принципе действует препарат нитроглицерин. При расщеплении нитроглицерина образуется NO, приводящий к расширению сосудов сердца и снимающий в результате этого чувство боли.
NO регулирует просвет мозговых сосудов. Активация нейронов какой-либо области мозга приводит к возбуждению нейронов, содержащих NO-синтазу, и/или астроцитов, в которых также может индуцироваться синтез NO, и выделяющийся из клеток газ приводит к локальному расширению сосудов в области возбуждения.
NO участвует в развитии септического шока, когда большое количество микроорганизмов, циркулирующих в крови, резко активируют синтез NO в эндотелии, что приводит к длительному и сильному расширению мелких кровеносных сосудов и как следствие – значительному снижению артериального давления, с трудом поддающемуся терапевтическому воздействию.
В физиологических концентрациях NO улучшает реологические свойства крови:
NO, образующийся в эндотелии, препятствует прилипанию лейкоцитов и кровяных пластинок к эндотелию и также снижает агрегацию последних.
NO может выступать в роли антиростового фактора, препятствующего пролиферации гладкомышечных клеток стенки сосудов, важного звена в патогенезе атеросклероза.
В больших концентрациях NO оказывает на клетки (бактериальные, раковые и т.д) цитостатическое и цитолитическое действие следующим образом:
· при взаимодействии NO с радикальным супероксид анионом образуется пероксинитрит (ONOO-), который является сильным токсичным окислителем;
· NO прочно связывается с геминовой группой железосодержащих ферментов и ингибирует их (ингибирование митохондриальных ферментов окислительного фосфорилирования блокирует синтез АТФ, ингибирование ферментов репликации ДНК способствуют накоплению в ДНК повреждений).
· NO и пероксинитрит могут непосредственно повреждать ДНК, это приводит к активации защитных механизмов, в частности стимуляции фермента поли(АДФ-рибоза) синтетазы, что еще больше снижает уровень АТФ и может приводить к клеточной гибели (через апоптоз).
Литература
- Филиппов П.П. «Как внешние сигналы передаются внутрь клетки». Соросовский образовательный журнал, № 3, 1998, с 28-34.
ЛЕКЦИЯ № 3
I. Энзимопатология
Энзимопатология – это наука, которая изучает энзимопатии.
Энзимопатии – это группа заболеваний, которые вызваны различными дефектами ферментов. Энзимопатий делятся на: наследственные (первичные) и приобретенные (вторичные).
Наследственные энзимопатии
Наследственные энзимопатии – это заболевания, вызванные наследственными нарушениями биосинтеза ферментов или их структуры и функции.
В норме:
Полное или частичное нарушения биосинтеза ферментов вызывают дефекты генов регуляторных белков, которые контролируют синтез ферментов:
Нарушение структуры и функции ферментов вызывают дефекты генов этих ферментов:
У образовавшегося фермента наблюдаются структурные изменения, которые проявляются в изменении его каталитической активности (как правило, она исчезает), чувствительности к активаторам и ингибиторам, сродству к субстратам, оптимумам рН, температуры. В связи с этим изучением констант фермента является решающим в постановке диагноза врожденных энзимопатий.
Наследственные энзимопатии по типу нарушений метаболизма делят на:
1. нарушения обмена аминокислот: фенилкетонурия, альбинизм, алкаптонурия и др.;
2. нарушения углеводного обмена: галактоземия, наследственная непереносимость фруктозы, гликогенозы;
3. нарушения липидного обмена: липидозы;
4. нарушения обмена нуклеиновых оснований: подагры, синдрома Леш-Нихана и др.;
5. нарушение обмена в соединительной ткани: мукополисахаридозы, хондродистрофия и др.;
6. дефекты ферментов в ЖКТ: муковисцидоз, целиакия, непереносимость лактозы и др.
7. нарушения обмена стероидов и т.д.
В норме метаболический путь протекает следующим образом:
Из-за дефекта в метаболическом пути (цикле, шунте) одного из ферментов в организме происходит накопление промежуточных продуктов (часто токсичных в высоких концентрациях) и дефицит жизненно необходимых конечных продуктов, что приводит к клиническим проявлениям:
Пример: фенилпировиноградная олигофрения – наследственное заболевание, приводящее в раннем детстве к гибели ребенка или к развитию у него тяжелой умственной отсталости.
Причиной заболевания является отсутствие в печени фермента фен-4-монооксигеназы, которая обеспечивает превращение незаменимой аминокислоты Фен в Тир:
Эта реакция необходима для катаболизма Фен, т.е. удаления его излишков. При отсутствии фен-4-монооксигеназы в организме происходит накопление Фен и превращение его в различные производные: фенилпировиноградную, фенилмолочную и фенилуксусную кислоты.
Фен и его производные в высоких концентрациях токсичны, накапливаясь в тканях, они оказывают на них повреждающее действие. Самой чувствительной к Фен и его производным оказывается нервная ткань детей, она поражается в первую очередь.
Диагноз фенилкетонурия ставят на основании обнаружения Фен в крови или фенилпировиноградной кислоты на пеленках детей. Лечение в основном сводится к исключению из питания ребенка Фен. Для такого ребенка Тир оказывается незаменимой аминокислотой.
Другое тяжелое наследственное заболевание – галактеземия (непереносимость молочного сахара), связано с отсутствием синтеза в печени ферментов, катализирующих превращение галактозы в глюкозу. В результате в раннем возврате происходит накопление в тканях галактозы, приводящее к развитию катаракты, поражению печени, мозга, нередко вызывающее гибель ребенка. Лечение в данном случае сводиться к исключению из диеты молочного сахара.
Приобретенные энзимопатии
Приобретенные энзимопатии делятся на: алиментарные, токсические и вызванные различными патологическими состояниями организма.
А). Алиментарные энзимопатии – это заболевания, вызванные изменением количества и активности ферментов вследствие нарушения характера питания.
Алиментарные энзимопатии вызываются дефицитом или дисбалансом в пище:
ü витаминов (гипо-, авитаминозы);
ü макро- и микроэлементов;
ü аминокислот;
ü жирных кислот;
ü других БАВ
Например, алиментарная энзимопатия, вызванная недостаточностью витамина А, проявляется нарушением сумеречного зрения (куриная слепота), воспалением слизистых глаз, ЖКТ, кожи.
Б). Токсические энзимопатии – это заболевания, вызванные нарушением активности ферментов вследствие действия токсических веществ. Токсическим веществами являются многие ксенобиотики (соли тяжелых металлов, пестициды, гербециды и т.д.), а также некоторые метаболиты в высоких концентрациях (алкоголь).
Токсические вещества могут либо избирательно угнетать активность (через денатурацию или ингибирование) или синтез отдельных ферментов, либо угнетать весь биосинтез белка (и соответственно всех ферментов).
Примеры:
ü Цианиды и СО прочно связываются с геминовым Fe активного центра цитохромов, что угнетает их активность;
ü Фториды угнетают активность ферментов, содержащих в активном центре Mg2+;
ü Ингибиторы, содержащиеся в соевых продуктах, яйцах домашней птицы угнетают активность протеаз ЖКТ - трипсина, химотрипсина, эластазы;
ü Антивитамины, присутствующие в некоторых пищевых продуктах, или разрушают витамины или конкурентно замещают их в молекулах ферментов, что приводит к угнетению активности этих ферментов.
В). Энзимопатии, вызванные различными патологическими состояниями организма. Так как ферменты имеют оптимумы t, рН и давления, практически любое заболевание, вызывающее нарушения КОС, изменение температуры тела, концентрации активаторов и ингибиторов, меняет активность ферментов организма.
Например, при ацидозе и повышении температуры возрастает активность катаболических (лизосом) и падает активность анаболических ферментов.
Ферменты в медицинской практике находят применение в качестве диагностических (энзимодиагностика) и терапевтических (энзимотерапия) средств.
II Энзимодиагностика
Энзимодиагностика (энзим[ы] + греч. diagnostikos способный распознавать) – методы диагностики болезней, патологических состояний и процессов, основанные на определении активности ферментов в биологических жидкостях.
Направления энзимодиагностики:
III Энзимотерапия
Энзимотерапия – применение ферментов животного, бактериального или растительного происхождения и регуляторов активности ферментов с лечебной целью.
Внедрению ферментных препаратов в современную клиническую практику способствовало развитие технологий получения обогащенных ферментами препаратов и очищенных ферментов.
В энзимотерапии существует насколько направлений:
1. Лекарственные препараты на основе ферментов. В качестве лекарственных препаратов наиболее широко используются гидролитические ферменты.
1). Протеолитические ферменты применяются при нарушении пищеварения. Например:
а). Экстракты слизистой оболочки желудка, основным действующим веществом которых является пепсин. Это препараты абомин и ацидинпепсин, их в основ