Особенности токсикокинетики при ингаляционных отравлениях
При ингаляционном отравлении яд поступает в кровь чрезвычайно быстро (в первые минуты), так как всасывающая поверхность альвеол составляет 100…150 м2. Кроме того, в легких отсутствуют условия для накопления яда, толщина альвеолокапиллярной мембраны мала и скорость кровотока по легочным капиллярам высока, поэтому яд быстро разносится кровью во все органы и ткани.
Барьер между воздухом и кровью состоит из липидной пленки, мукоидной пленки, слоя альвеолярных клеток, базальной мембраны эпителия, сливающейся с базальной мембраной капилляров. Всасывание летучих веществ начинается уже в верхних дыхательных путях, но полнее всего оно происходит в легких и определяется градиентом концентраций. Так всасываются многие летучие неэлектролиты (углеводороды, галогенуглеводороды, спирты, эфиры и т. д.). Чем больше коэффициент растворимости паров яда вода/воздух (коэффициент Оствальда), тем быстрее пары поступают в кровь.
Некоторые пары и газы (HCl, HF, SO2, пары неорганических кислот) в дыхательных путях претерпевают химические превращения и обладают способностью повреждать альвеолярную мембрану, вызывая токсический отек легких, токсический бронхит, бронхиолит, пневмонию, асфиксию. На производстве часто образуются аэрозоли (пыль, дым, туман).
В дыхательных путях происходит 2 процесса: задержка и выделение поступивших частиц. В верхних дыхательных путях задерживается до 80…90 % частиц размерами более 10 мкм, в альвеолы попадает до 70…90 % частиц размерами менее 1…2 мкм. Эти частицы удаляются из организма с мокротой. Водорастворимые аэрозоли всасываются по всей поверхности дыхательных путей, причем заметная часть их через носоглотку попадает в желудок.
При ингаляционных отравлениях нередко организм также пытается избавиться от поступающего яда, то есть развивается синдром, аналогичный гастроинтестинальному. Он проявляется в виде кашля, чихания, ларинго- и бронхоспазма, задержке дыхания или снижении дыхательного объема и частоты дыханий.
Связывание яда в организме
После всасывания яд начинает поступать в различные среды и пространства организма, где и осуществляются токсикокинетические и токсикодинамические механизмы, в том числе и процессы естественной детоксикации.
Каким-либо путем попав в кровоток, яд прежде всего связывается с белками крови — альбуминами, a2-глобулинами, иммунными комплексами. Соединение яда с белком уменьшает токсичность яда и дает большой выигрыш во времени для выведения яда или его последующей биотрансформации. Разные яды (как и разные фармакологические препараты) в разной степени связываются с белками, чем, в частности, определяется токсичность (активность) вещества. Некоторые металлы связываются клетками крови, в основном с эритроцитами (более 90 % свинца или мышьяка циркулирует в эритроцитах).
Связь яда с белками крови является вторым механизмом естественной детоксикации, поскольку белок препятствует воздействию яда на рецептор токсичности.
Биотрансформация ядов
Биотрансформация (метаболизм) ядов протекает главным образом в печени. Процесс этот ферментативный и требует энергетического обеспечения.
Физиологический смысл биотрансформации заключается в превращении яда в менее токсическое, чем исходное, и водорастворимое вещество, то есть биотрансформация переводит яд в форму, готовую к выведению из организма.
На первом этапе биотрансформации, как правило, осуществляются реакции гидроксилирования (они и требуют энергетических затрат), а на втором — реакции конъюгации с глюкуроновой кислотой, сульфатом, ацетилом, метилом, глицином.
Если в процессе эволюции популяция постоянно сталкивается с каким-либо веществом (ядом), требующим дезактивации, в генотипе постепенно закрепляется выработка специфического фермента. Такое вещество называется биотиком. Так, например, промежуточным продуктом некоторых метаболических реакций является этанол, и для его обезвреживания в печени имеется специфический фермент алкогольдегидрогеназа. Вещество, с которым популяция в процессе эволюции не встречалась, называют ксенобиотиком. Если ксенобиотик по строению близок к биотику, для его расщепления организм использует фермент, специфичный к биотику, сходному с ксенобиотиком. Так, метанол и этиленгликоль разлагаются алкогольдегидрогеназой, специфичной к этанолу. Однако сродство алкогольдегидрогеназы к метанолу в 8…10 раз ниже, чем к этанолу. Чаще ксенобиотики подвергаются окислению на цитохроме P-450 в печени.
К сожалению, иногда биотрансформация протекает с образованием более токсических продуктов, чем исходный яд. Такой вариант биотрансформации называют летальным синтезом. Чаще летальному синтезу подвергаются ксенобиотики.
Примером летального синтеза может служить расщепление метанола под воздействием алкогольдегидрогеназы:
Продукты этого метаболизма (формальдегид и муравьиная кислота) полностью определяют токсичность метанола. Этиленгликоль под действием алкогольдегидрогеназы превращается в щавелевую кислоту, которая также, наряду с другими продуктами распада (глиоксаль и другие), определяет его токсичность. Промежуточным продуктом метаболизма этанола является значительно более токсичный ацетоальдегид.
В результате биотрансформации могут образовываться свободные радикалы, запускающие переокисление липидов и повреждающие ферменты. Только этими механизмами удается объяснить чрезвычайно высокую токсичность некоторых ядов (например, четыреххлористого углерода: ).