Средними или относительными величинами

В медицинской практике нередко приходится решать вопрос о том, являются ли статистически достоверными различия показателей, например, заболеваемости населения двух районов, летальности при разных методах лечения, различия средних, характеризующих рост, вес и др., оценить эффективность лекарственных средств. С целью проверки высказанных гипотез применяются различные статистические приемы, среди которых наиболее простым является следующий :

а) для средних величин t = средними или относительными величинами - student2.ru

б) для относительных величин t= средними или относительными величинами - student2.ru , где

М1 и Р1 - более выраженные по своей величине средняя или относительная

М2 и Р2 - средняя или относительная величина, которые по своей величине меньше в сравнении с М1 и Р1 .

Если полученное значение критерия t Стьюдента окажется равным 2, что соответствует Р = 95%, это является достаточным в медико-биологических исследованиях .

Критерий Стьюдента может иметь разные значения; в зависимости от этого вероятность различия между показателями может составлять 95, 99,7 и 99,9%. Но может быть и так, что t <2. В таком случае вероятность различий Р< 95%, а практический вывод заключается в том, что нельзя утверждать о статически достоверном различии сравниваемых и относительных величин. Исследователю можно рекомендовать увеличить число наблюдений с тем, чтобы окончательно решить вопрос о влиянии изучаемого фактора на результативный признак.

Пример 11.

Проведем оценку достоверности различий показателей, характеризующих «индекс здоровья» детей двух районов :

Р1 = 28 % m 1 ± 0,5 % n1=250 Р2=26% m2 = ± 0,4 % n2 =310

t = средними или относительными величинами - student2.ru

В связи с тем, что критерий достоверности оказался равным 3,1 (t = 3,1), который соответствует по таблице стандартных значений критерия t Стьюдента вероятности 99,7 % , можно утверждать о наличии статистически достоверных различий между показателями «индекса здоровья» детей двух районов.

Как уже отмечалось выше, в математической статистике минимальным значением достоверности считается вероятность в 95% (0,95) или же уровень значимости 0,05. Чем меньше уровень значимости, тем больше достоверность, т.е. 0,001<0,01<0,05. Оценить достоверность различий в уровнях значимости нужно также по таблице Стьюдента.

СТАНДАРТНЫЕ ЗНАЧЕНИЯ КРИТЕРИЯ t (Критерий Стьюдента)

n 0,05 0,01 0,001 n 0,05 0,01 0,001
12,71 63,66   2,08 2,83 3,82
4,30 9,93 31,60 2,07 2,82 3,79
3,18 5,84 12,94 2,07 2,81 3,77
2,78 4,60 8,61 2,06 2,80 3,75
2,57 4,03 6,86 2,06 2,79 3,73
2,45 3,71 5,96 2,06 2,78 3,71
2,36 3,50 5,41 2,05 2,77 3,69
2,31 3,36 5,04 2,05 2,76 3,67
2,26 3,25 4,78 2,04 2,76 3,66
2,23 3,17 4,59 2,04 2,75 3,65
2,20 3,11 4,44 2,02 2,70 3,55
2,18 3,06 4,32 2,01 2,68 3,50
2,16 3,01 4,22 2,00 2,66 3,46
2,15 2,98 4,14 1,99 2,64 3,42
2,13 2,95 4,07 1,98 2,63 3,39
2,12 2,92 4,02 1,98 2,62 3,37
2,11 2,90 3,97 1,97 2,60 3,34
2,10 2,88 3,92 1,96 2,59 3,31
1,96 2,86 3,88 1,96 2,58 3,29
2,09 2,85 3,85      
5% 1% 0,1% 5% 1% 0,1%


Определим уровень значимости по найденному критерию t = 3,1 (пример 11). Берется сумма чисел наблюдений (в случае, если число наблюдений меньше 30, то вычитается 1, а если в обеих группах n < 30, то вычитается два). На нашем примере 250 + 310 = 560. В таблице Стьюдента эта цифра близка к . Для критерия t = 3,1 при данном числе наблюдений уровень значимости будет Р < 0,01, т.к. t = 3,1 < чем 3,29, но > 1,96. (Найденный критерий t должен быть больше табличного значения).

Таким образом можно сделать вывод о наличии достоверной разницы между показателями „индекса здоровья” детей двух районов с уровнем значимости < 0,01 ( Р < 0,01), что соответствует вероятности достоверности 99%.

Подпись автора методической разработки.

29.06.2016.

Наши рекомендации