Оценка статистической значимости результатов исследования
Под статистической значимостью данных понимают степень их соответствия отображаемой действительности, т.е. статистически значимыми данными считаются те, которые не искажают и правильно отражают объективную реальность.
Оценить статистическую значимость результатов исследования – означает определить, с какой вероятностью возможно перенести результаты, полученные на выборочной совокупности, на всю генеральную совокупность. Оценка статистической значимости необходима для понимания того, насколько по части явления можно судить о явлении в целом и его закономерностях.
Оценка статистической значимости результатов исследования складывается из:
1. ошибок репрезентативности (ошибок средних и относительных величин) — m;
2. доверительных границ средних или относительных величин;
3. достоверности разности средних или относительных величин по критерию t.
Стандартная ошибка средней арифметическойили ошибка репрезентативности характеризует колебания средней. При этом необходимо отметить, что чем больше объем выборки, тем меньше разброс средних величин. Стандартная ошибка среднего вычисляется по формуле:
В современной научной литературе средняя арифметическая записывается вместе с ошибкой репрезентативности:
или вместе со среднеквадратическим отклонением:
В качестве примера рассмотрим данные по 1500 городских поликлиник страны (генеральная совокупность). Среднее число пациентов, обслуживающихся в поликлинике равно 18150 человек. Случайный отбор 10 % объектов (150 поликлиник) дает среднее число пациентов, равное 20051 человек. Ошибка выборки, очевидно связанная с тем, что не все 1500 поликлиник попали в выборку, равна разности между этими средними – генеральным средним (Mген) и выборочным средним (Мвыб). Если сформировать другую выборку того же объема из нашей генеральной совокупности, она даст другую величину ошибки. Все эти выборочные средние при достаточно больших выборках распределены нормально вокруг генеральной средней при достаточно большом числе повторений выборки одного и того же числа объектов из генеральной совокупности. Стандартная ошибка среднего m - это неизбежный разброс выборочных средних вокруг генеральной средней.
В случае, когда результаты исследования представлены относительными величинами (например, процентными долями) – рассчитывается стандартная ошибка доли:
где P – показатель в %, n – количество наблюдений.
Результат отображается в виде(P ± m)%.Например, процент выздоровления среди больных составил (95,2±2,5)%.