Стабилизация растворов для инъекций

Под стабильностью препаратов подразумевают их способность сохранять физико-химические свойства и фармакологическую активность, предусмотренные требованиями фармакопеи или НТД, в течение определенного срока хранения.

Изучение вопросов стабилизации инъекционных растворов является важной технологической задачей, так как около 90 % лекарственных веществ требуют применения стабилизаторов или особых условий приготовления. Это объясняется тем, что растворы лекарственных веществ при термической стерилизации претерпевают различные изменения. Причиной их могут быть реакции гидролиза, окисления-восстановления, декарбоксилирования, полимеризации, фотохимической деструкции и др.

Окисление веществ. Окислению подвергаются лекарственные вещества различного химического строения: производные ароматических аминов, фенотиа-зина, многие соли алкалоидов, соли азотистых оснований, витамины и другие вещества.

В процессе окисления образуются фармакологически неактивные вещества или ядовитые продукты. Скорость окислительных процессов зависит от многих факторов: концентрации кислорода, температуры, рН среды, наличия катализаторов, агрегатного состояния.

В процессе окисления чаще всего может происходить изменение цвета растворов. Например, производные фенотиазина (аминазин, дипразин и др.) в растворах легко окисляются кислородом воздуха с образованием продуктов окисления темно-красного цвета. Растворы глюкозы при стерилизации в посуде из щелочного стекла окисляются, карамелизуются и приобретают желтую, а иногда бурую окраску. В процессе приготовления и хранения препараты алкалоидов опия (морфин, апоморфин, омнопон и др.), особенно в щелочной среде, подвергаются окислению с образованием неактивных или ядовитых веществ, что сопровождается изменением окраски растворов. Морфин, окисляясь, переходит в ядовитый оксидиморфин, апоморфин окисляется с образованием ядовитых продуктов зеленого цвета.

Среди окисляющихся веществ значительное место занимают витамины: кислота аскорбиновая и ее натриевая соль легко окисляются с образованием неактивной 2,3-дикетогулоновой кислоты. Этот процесс значительно ускоряется в щелочной среде, особенно в присутствии катализаторов — следов ионов металлов, при этом растворы приобретают желтую окраску. Витамин Bt под влиянием кислорода воздуха, повышенной температуры, солнечного света, катализаторов легко окисляется и приобретает желтый цвет.

Гидролиз. Многие лекарственные вещества подвергаются гидролитическому расщеплению на менее активные, неактивные или ядовитые компоненты.

Гидролизу подвергаются алкалоиды, гликозиды, витамины и другие соединения. Скорость гидролиза зависит от температуры, присутствия катализаторов, природы растворителя. Важный фактор при гидролитическом расщеплении веществ рН среды. Известно, что гидролизу легко подвергаются соли слабых оснований и сильных кислот, атакже соли слабых кислот и сильных оснований. Неактивные и даже ядовитые продукты образуются в процессе гидролиза дикаина, новокаинамида, новокаина, атропина сульфата, скополамина гидробромида и других веществ.

Изомеризация. Среди лекарственных веществ имеется много соединений, обладающих оптической активностью (атропин, адреналин, алкалоиды спорыньи и др.). Лекарственную ценность представляют определенные изомеры, например, эрготамин существует в двух изомерных формах, при этом левовраща-ющая форма — физиологически активное соединение, а правовращающая — малоактивное вещество.

Изомеризация зависит от химической природы соединения, от функциональной группы, направленной к асимметрическому атому углерода, от оптической активности вещества, температуры, света, ионов металлов, рН среды и других факторов.

Влияние микрофлоры. В процессе приготовления лекарств в растворы могут попадать различные микроорганизмы, которые способны выделять продукты жизнедеятельности (токсины, ферменты), вызывающие изменения в лекарственных препаратах окислительного, гидролитического и другого характера, а также оказывать вредное влияние на организм.

Для повышения устойчивости лекарственных форм для инъекций используют стабилизацию физическими, химическими и комплексными методами.

Стабилизация физическими методами:

— кипячение воды с последующим быстрым ее охлаждением;

— насыщение воды для инъекций углерода диоксидом или инертными газами;

— перекристаллизация исходных веществ;

— обработка растворов адсорбентами.

В условиях аптек наиболее распространен метод кипячения воды с последующим быстрым ее охлаждением. При этом содержание свободного кислорода в воде уменьшается с 9 до 1,4 мг в 1 л, что существенно снижает интенсивность окислительно-восстановительных процессов в растворах, обеспечивая их устойчивость.

Кипячением воды с последующим быстрым охлаждением достигают также

снижения содержания в ней углерода диоксида. Это очень важно для растворов препаратов, которые разлагаются в присутствии углерода диоксида, нередко с образованием осадков. По этой причине на свежепрокипяченной воде для инъекций готовятся растворы эуфиллина 12 %, гексенала и др.

Метод насыщения воды для инъекций углерода диоксидом или инертными газами более эффективен, чем кипячение, так как вода, насыщенная этими газами, содержит меньше кислорода по сравнению с прокипяченной (0,18 мг в 1 л). Однако он технически более сложный и требует специального оборудования. Я. И. Лифшиц, А. М. Котенко предложили установку для насыщения воды углерода диоксидом в условиях аптеки.

Углерода диоксид выделяется при взаимодействии кислоты хлористоводородной 25 % с натрия гидрокарбонатом. Для насыщения 1 л воды требуется 55 мл кислоты и 33,4 г натрия гидрокарбоната.

Натрия гидрокарбонат помещают в склянку с таким расчетом, чтобы ее объем был заполнен не более чем на половину. В нее из другой склянки каплями вводят кислоту хлористоводородную (может использоваться аппарат Киппа). Реакция идет очень быстро, поэтому для регулирования подачи кислоты устанавливают зажим. Образующийся углерода диоксид проходит через промывную склянку ипопадает в воду. Газ подают до тех пор, пока взятая проба еоды (10 мл) не даст серого или фиолетового окрашивания по смешанному индикатору (метиловый оранжевый — индигокармин). Далее перекрывают кран или зажим, соединяющий склянки с натрия гидрокарбонатом и кислотой хлористоводородной. Вода, насыщенная углекислым газом по этой методике, имеет рН = 4,0.

Метод перекристаллизации исходных веществ применяется для удаления содержащихся в них примесей. Его целесообразно использовать для очистки гексаметилентетрамина, если препарат не отвечает требованию «годен для инъекций», то есть содержит примеси аминов, солей аммония и параформ.

Перекристаллизацию гексаметилентетрамина осуществляют следующим образом: сначала препарат растворяют в горячем спирте этиловом до получения насыщенного раствора и после фильтрования охлаждают. При этом образуется кристаллический осадок, который отделяют через фильтр, просушивают, а после анализа по фармакопейной статье, в случае соответствия ее требованиям, используют для приготовления растворов для инъекций. В условиях аптеки эту операцию провести трудно.

Примеси, содержащиеся в лекарственных препаратах, могут быть удалены и методом адсорбции их из растворов лекарственных веществ. Адсорбентом служит уголь активированный марки А. Он выполняет роль адсорбента не только для низкомолекулярных химических примесей (кальция оксалата, например, в кальция лактате), но и для высокомолекулярных соединений, в частности для пирогенных веществ, представляющих собой смеси полилипо-протеидов и липополисахаридов.

Для депирогенизации растворов глюкозы, а также очистки других растворов нельзя использовать карболен, таблетки которого получают методом влажного гранулирования с помощью крахмального клейстера.

Стабилизация химическими методами осуществляется добавлением в растворы химических веществ (стабилизаторов или антиоксидан-тов); подбором соответствующих систем растворителей; введением веществ, обеспечивающих значения рН среды, при которых препарат максимально устойчив; переводом нерастворимого активного вещества в растворимые соли или комплексные соединения и др.

Наши рекомендации