Выпуклые (вогнутые) функции одной переменной. Точка перегиба.
Вторая производная. Если производная f ' ( x ) функции f ( x ) дифференцируема в точке ( x0 ), то её производная называется второй производнойфункции f ( x ) в точке ( x0 ), и обозначаетсяf '' ( x0 ).
Функция f ( x ) называется выпуклой на интервале ( a, b ), если её график на этом интервале лежит ниже касательной, проведенной к кривой y = f( x ) в любой точке ( x0, f ( x0 ) ), x0 (a, b ).
Функция f ( x ) называется вогнутой на интервале ( a, b ), если её график на этом интервале лежит выше касательной, проведенной к кривой y = f( x ) в любой точке ( x0, f ( x0 ) ), x0 (a, b ).
Достаточное условие вогнутости ( выпуклости ) функции.
Пусть функция f ( x ) дважды дифференцируема ( имеет вторую производную ) на интервале ( a, b ), тогда:
если f '' ( x ) > 0 для любого x ( a, b ), то функция f ( x ) является вогнутой на интервале ( a, b );
если f '' ( x ) < 0 для любого x ( a, b ), то функция f ( x ) является выпуклой на интервале ( a, b ) .
Точка, при переходе через которую функция меняет выпуклость на вогнутость или наоборот, называется точкой перегиба. Отсюда следует, чтоесли в точке перегиба x0 существует вторая производная f '' ( x0 ), то f '' ( x0 ) = 0.
П р и м е р . | Рассмотрим график функции y = x3 : Эта функция является вогнутой при x > 0 и выпуклой при x < 0. В самом деле, y'' = 6x, но 6x > 0 при x > 0 и 6x < 0при x < 0,следовательно, y'' > 0 при x > 0 и y'' < 0 при x < 0, откуда следует, что функция y = x3 является вогнутой при x > 0 и выпуклой при x <0. Тогда x = 0 является точкой перегиба функции y = x3. |
Вертикальные и невертикальные асимптоты графика функции одной переменной.
Асимптотой кривой называется прямая, расстояние до которой от точки, лежащей на кривой, стремится к нулю при неограниченном удалении от начала координат этой точки по кривой (рис.5.10).
Асимптоты бывают вертикальные (параллельные оси Оу), горизонтальные (параллельные оси Ох) и наклонные.
Рис. 5.10
Вертикальные асимптоты
Определение. Прямая называетсявертикальной асимптотой графика функции , если выполнено одно из условий:
или (рис.5.11)
Рис. 5.11
Вертикальные асимптоты, уравнение которых х=x0 , следует искать в точках, где функция терпит разрыв второго рода, или на концах ее области определения, если концы не равны . Если таких точек нет, то нет и вертикальных асимптот Например, для кривой , вертикальной асимптотой будет прямая , так как , . Вертикальной асимптотой графика функции является прямая (осьОу), поскольку .
Горизонтальные асимптоты Определение. Если при ( ) функция имеет конечный предел, равный числуb: , то прямая есть горизонтальная асимптота графика функции . Например, для функции имеем , .Соответственно, прямая − горизонтальная асимптота для правой ветви графика функции , а прямая − для левой ветви. В том случае, если , график функции не имеет горизонтальных асимптот, но может иметь наклонные.
Наклонные асимптоты Определение. Прямая называетсянаклонной асимптотой графика функции при ( ), если выполняется равенство .