Изучение числовых равенств и неравенств

Понятия о равенствах, неравенствах и уравнениях раскрыва­ются во взаимосвязи. Работа над ними ведется с I класса, ор­ганически сочетаясь с изучением арифметического материала.

Числовые равенства и неравенства учащиеся получают в ре­зультате сравнения заданных чисел или арифметических вы­ражений. Поэтому знаками «>», «<», «=» соединяются не лю­бые два числа, не любые два выражения, а лишь те, между которыми существуют указанные отношения. Два равных чис­ла или два выражения, имеющие равные значения, соединенные знаком «=», образуют равенство. Если одно число больше (меньше) другого или одно выражение имеет значение боль­ше (меньше), чем другое выражение, то, соединенные соответ­ствующим знаком, они образуют неравенство. Таким образом, первоначально у младших школьников формируются понятия только о верных равенствах и неравенствах.

Ознакомление с равенствами и неравенствами в начальных классах непосредственно связывается с изучением нумерации и арифметических действий.

Сравнение чисел осуществляется сначала на основе сравнения множеств, которое выполняется, как известно, с по­мощью установления взаимно однозначного соответствии. Этому способу сравнения учат детей в подготовительный период и в начале изучения нумерации чисел первого десятка. Попутно выполняется счет эле­ментов множеств и cpавнение полученных чисел (кругов 7, треугольников 4), кругов больше, чем треугольников, 7 боль­ше, чем 4). В дальнейшем при сравнении чисел учащиеся определяют их место в натуральном ряду: 9 меньше, чем 10, по­тому что при счёте число 9 называют перед числом 10 и т.д. Установленные отношения записываются с помощью знаков «>», « <», «=», учащиеся упражняются в чтении равенств и неравенств. Впоследствии при изучении нумерации чисел в пределах 100, 1000, нумерации многозначных чисел сравнение чисел ocyществляется на основе сопоставления их по месту в натуральном ряду, либо на основе разложения чисел по деся­тичному составу и сравнения соответствующих разрядных чисел, начиная с высшего разряда (75>48, так как 7 десятков больше, чем 4 десятка; 75>73, так как десятков поровну, а единиц в первом числе больше, чем во втором).

Сравнение величин сначала выполняется с опорой на сравнение самих предметов по данному свойству, а потом осу­ществляется на основе сравнения числовых значений величин, для чего заданные величины выражаются в одинаковых еди­ницах измерения. Сравнение величин вызывает трудности у уча­щихся, поэтому, чтобы научить этой операции, надо системати­чески в 1-4 классах предлагать разнообразные задания, например:

1) подберите равную величину: 7км 500м =… м, 3080 кг = … т … кг.

2) Подберите числовые значения величин так, чтобы запись была верной: … ч< … мин, … см =… дм … см. и др.

3) Вставьте наименования у величин так, чтобы запись была верной: 35 км =35 000 .... 16 мин >16 .... 17 т 5 ц=17500 ...

4) Проверьте, верные или неверные равенства даны, исправь­те знак, если равенства неверны: 4 т 8 ц=480 кг, 100 мин =1 ч, 2 м 5 см =250 см.

Подобные задания помогают детям усвоить не только понятия равных и неравных величин, но и отношения единиц из­мерения.

Переход к cpавнению выражений осуществляется постепен­но. Сначала в процессе изучения сложения и вычитания в пре­делах 10 дети длительное время упражняются в сравнении выражения и числа (числа и выражения). Первые нера­венства вида 3+1 >3, 3—1<З полезно получать из равенст­ва (3=3), сопровождая преобразования соответствующими опе­рациями над множествами. Например, на классном наборном полотне и па партах отложено 3 треугольника и 3 круга и записано: 3 = 3. Учитель предлагает детям придвинуть к 3 тре­угольникам еще 1 треугольник и записать это (3+1—запись под треугольниками). Число кругов не уменьшилось (3). Уча­щиеся сравнивают число треугольников и кругов и убежда­ются, что треугольников больше, чем кругов (4>3), значит, можно записать: 3+1>3 (три плюс один больше, чем три). Аналогичная работа ведется над неравенством 3-1<З (три минус один меньше, чем три).

В дальнейшем выражение и число (число и выражение) учащиеся сравнивают, не прибегая к операциям над множест­вами; находят значение выражения и сравнивают его с задан­ным числом, что отражается в записях:

5+3>5 2<7-4 7=4+3

8>5 2<3 7=7

После знакомства с названиями выражений учащиеся чита­ют равенства и неравенства так: сумма чисел 5 и 3 больше, чем число 5; число 2 меньше, чем разность чисел 7 и 4, и т. п.

Опираясь на операции над множествами и сравнение мно­жеств, учащиеся практически усваивают важнейшие свойства равенств и неравенств (если а = b, то b=a; если а>b, то b<а).

Дети видят, что если кругов и треугольников поровну, то можно сказать, что кругов столько, сколько тре­угольников (3+2=5), а также треугольников столько, сколько кругов (5=3+2). Если же предметов не поровну, то одних больше (3+1>3), а других меньше (3<3+1).

В дальнейшем при изучении действий в пределах 100, 1000 и 1000000 упражнения на сравнение выражения и числа даются на новом числовом материале, и увеличивается количество чи­сел и знаков действий в выражениях.

Сравнивая неоднократно специально подобранные выраже­ния и числа, например: 17+0 и 17, 19-0 и 19, 7-1 и 7, 0:5 и 0, с+1 и с, с: 1 и с и т. п., учащиеся накапливают наблюдения об особых случаях действий, глубже осознают конкретный смысл действий. Упражнения на сравнение выражений и числа закрепляют умения читать выражения и способствуют формированию вычислительных навыков.

Сравнить выражения - значит, сравнить их зна­чения. Сравнение выражений впервые включается уже в конце изучения сложения и вычитания в пределах 10, а затем при изу­чении действий во всех концентрах эти задания системати­чески предлагаются учащимся. Например, надо сравнить сум­мы: 6+4 и 6+3. Ученик рассуждает так: первая сумма рав­на 10, вторая - 9, 10 больше, чем 9, значит, сумма чисел 6 и 4 больше, чем сумма чисел 6 и 3. Это рассуждение отражается в записях:

6+4>6+3 7-5<7- 3 4+4=10-2

10>9 2<1 8=8

При изучении действий в других концентрах задания на сравнение выражений усложняются: более сложными становят­ся выражения, учащимся предлагаются задания вставить в одно из выражений подходящее число так, чтобы получить верные равенства или неравенства; проверить, верные ли равенства (неравенства) даны, неверные исправить, изменить знак отношения или число в одном из выражений; составить из данных выражений верные равенства или верные неравенства. Сами выражения подбираются таким образом, чтобы, сравнивая вы­ражения, учащиеся наблюдали свойства и зависимости между компонентами и результатами действий. Например, после того как установили с помощью вычислений, что сумма 60+40 боль­ше суммы 60+30, учитель предлагает сравнивать соответствующие слагаемые этих сумм, и дети отмечают, что первые сла­гаемые в этих суммах одинаковые, а второе слагаемое в первой сумме больше, чем во второй. Много раз подмечая эту зави­симость, учащиеся приходят к обобщению и затем свои знания используют при сравнении выражений.

Таким образом, при изучении всех концентров задания на сравнение чисел и выражений, с одной стороны, способст­вуют формированию понятий о равенствах и неравенствах, а с другой стороны, усвоению знаний о нумерации и арифмети­ческих действиях, а также формированию вычислительных на­выков [1].

Методика изучения уравнений

В соответствии с программой в 3-4 классах рассматри­ваются уравнения первой степени с одним неизвестным ви­да:

x + 4 = 8, 5+ x =10, 8-х=3, 8 : x = 4, x•3 = 12 и др.

Неизвестное число сначала находят подбором, а позднее на ос­нове знания связи между результатом и компонентами арифметических действий. Эти требования программы опреде­ляют методику работы над уравнениями.

На подготовительном этане к введению первых уравнений при изучении сложения и вычитания в пределах 10 учащиеся устанавливают связь между суммой и слагаемыми. Кроме того, к этому времени дети овладевают умением сравни­вать выражение и число и получают первые представления о числовых равенствах вида: 6+4=10, 8=5+3. Большое значе­ние в плане подготовки к введению уравнений имеют задания на подбор пропущенного числа в выражениях вида:

-3=7. В процессе выполнения таких заданий дети привыкают к мысли, что неизвестным может быть не только сумма или разность, но и одно из слагаемых (уменьшаемое или вычитаемое), в дальнейшем – компоненты действий умножения и деления.„ =2, „= 6, 5-„4+

+3=8. Затем учитель поясняет, что в матема­тике принято обозначать неизвестное число малыми латинскими буква­ми. Дается запись и чтение одной из букв—x (икс). Предла­гается обозначить неизвестное число буквой x и прочитать равенство. Учитель поясняет, что такие равенства называют уравнения­ми, что решить уравнение – значит найти такое значение x„Знакомство с уравнением происходит в 3 классе (ч.1, с. 10) при решении задачи с числами, например: «К неизвестному числу прибавили 3 и получили 8. Найти неизвестное число». По данной задаче со­ставляется равенство с неизвестным числом, которое может быть записано так:, при котором равенство будет верным. Определение уравненияи корня уравнения не даётся в началь­ных классах. Учащиеся упражняются в чтении, записи и реше­нии уравнений. Показывают разные формы чтения: «К какому числу надо прибавить 2, чтобы получить 9», «Первое слагае­мое 4, второе неизвестно, сумма равна 7; чему равно второе слагаемое?» и др. При решении первых уравнений дети опираются на операции над множествами, на знание состава чисел, на ус­тановление отношений между результатами и компонентами действий (при сложении самое большое число-сумма, она со­стоит из слагаемых; при вычитании самое большое число- уменьшаемое, оно состоит из вычитаемого и разности).

Сначала уравнения решаются подбором: вместо неизвестного подставляют (например, с помощью разрезных цифр) одно за другим числа из множества чисел, данных в учебнике или учителем,пока не найдут такое, которое «подходит» (при котором получается верная запись).

Учитель на доске, а дети в тетрадях записывают решение уравнения так:

х+3=7 х-3=7 7-х=5

х=4 х=10 х=2

Затем дети учатся выполнять проверку решения уравнения и учатся оформлять решение следующим образом:

Х + 40 = 96

Х = 96 – 40

Х = 56

56+40=96

96=96

Для того, чтобы лучше подготовить детей к решению уравнений в старших классах имеет смысл прежде всего установить, какие значения может принимать x в данном уравнении (т.е. фактически речь ведётся об области допустимых значений неизвестного - ОДЗ).

Примерно в таком же плане в 3 классе (ч. 1, с. 48) вводятся урав­нения вида: x•3==12, 5•х=10, 15:х=5и др., которые также вначале решаются подбором. Данный способ решения применя­ют к уравнениям, где вычисления выполняются на основе знания табличных случаев арифметических действий. Таким образом, решение уравнений способствует усвоению таблиц и состава чисел из слагаемых, из множителей.

Затем уравне­ния решают на основе знаний правил нахождения неизвестного компонента.

Учащиеся объясняют решение урав­нения, пользуясь памяткой

1)Читаю уравнение.

2) Подумаю, какие значения может принимать Х.

3) Подумаю, чем является неизвестное число.

4) Вспомню правило, как найти неизвестное число.

5) Вычисляю.

6) Проверяю.

С целью формирования умений решать уравнения, предла­гают разнообразные задания:

1) Решите уравнение и выполните проверку.

2) Выполните проверку решенных уравнений,объясните ошибки в неверно решенных уравнениях.

3) Составьте уравнения с заданными числами, решите и про­верьте решение.

4) Из заданных уравнений выберите, и решите те, в которых неизвестное число находят вычитанием (делением).

5) Из заданных уравнений выпишите те, в которых неиз­вестное число равно 8.

6) Рассмотрите решение уравнения, определите, чем явля­ется неизвестное в уравнении, и вставьте пропущенный знак дей­ствия:

2=12,*2=12, x*x

х=12:2. х=12•2.

Теория 33

Методика изучения дробей

В начальных классах, с целью подготовки к изучению дробей в 5 классе, по традиционной программе во 2 классе изучаются доли величины, их обозначение и сравнение, нахождение доли числа и числа по его доле; в 3 классе - образование дробей, их чтение и запись, сравнение дробей (простейшие случаи), нахождение части числа. Все эти вопросы раскрываются на наглядной основе.

К концу обучения в начальной школе учащиеся должны уметь:

1. Показывать и называть доли прямоугольника, круга и отрезка.

2. Читать и записывать доли в виде дроби со знаменателем, не превышающим число 10.

3. Решать задачи на нахождение доли числа и числа по его доле.

4. Показывать и называть часть прямоугольника, круга, отрезка.

5. Читать и записывать обыкновенные дроби со знаменателем, не превышающим числа 10; пользуясь записью дроби, сказать, на сколько равных частей, долей разделена величина и сколько таких частей взято.

6. Уметь сравнивать дроби, опираясь во всех случаях на рисунок.

7. Решать задачи на нахождение дроби числа.

Ознакомление с долями

Основная задача при ознакомлении с долями - научить детей практически образовать доли по математической записи и обратно: записывать доли, исходя из практических действий. Например, чтобы получить одну

третью долю круга, надо круг разделить на три равные части и взять одну такую часть; если круг разделили на шесть равных частей и взяли одну часть - это значит одна шестая доля круга.

При ознакомлении с долями у каждого ученика должны быть наглядные пособия, с которыми он работает, дублируя действия учителя. Предварительно создавая проблемную ситуацию, учитель мотивирует необходимость изучения новых чисел. После этого объявления темы, предлагает учащимся взять свои квадраты (заранее приготовлены) и просит их перегибанием разделить на две равные части (показывает как надо делать). Разрезав по линии сгиба, учитель наложением показывает учащимся, что две половинки равные и одну половинку называет "это одна вторая доля квадрата". После этого просит их показать одну вторую долю своего квадрата. Далее выясняют, что целый квадрат состоит из двух вторых частей.

Далее учащиеся аналогичным образом получают одну четвертую долю квадрата. После этого показываем запись долей: 1/2 и объясняем: число 2 показывает, что квадрат разделили на две равные части, а число 1 показывает, что взяли одну такую часть и т.д..

Закрепляя понятие доли, учащимся предлагаются вопросы:

1) Объясните, как получить 1/2 долю круга?

2) Что означает выражение " 1/5 отрезка"?

3) Круг разделили на 7 равных частей. Как назовете одну такую часть?

4) Отрезок разделили на 4 разные части. Можно ли одну часть назвать "одной четвертой долей отрезка"?

Изучение числовых равенств и неравенств - student2.ru 5) Назовите, какая доля прямоугольника закрашена и запишите эту долю (рис.115). Что обозначают в этой записи числа, записанные выше черты и ниже черты?

Сравнение долей

Учащимся предлагается взять два круга (или полоску бумаги) и разрезанием получить одну вторую и одну четвертую доли. Затем, одну вторую круга накладываем на одну четвертую круга и делаем вывод, что первое больше второго. Предлагаем записать: 1/2 > 1/4, 1/4 < 1/2.

Далее можно научить сравнивать доли, используя отрезки. Пусть нам надо сравнить 1/3 и 1/4. Предлагаем начертить отрезок и показать дугой одну третью долю. Затем начертим такой же отрезок еще раз и просим показать одну четвертую долю. По длине отрезков делаем вывод, что 1/3 > 1/4 (рис.116).

Изучение числовых равенств и неравенств - student2.ru

Рис.116

Нахождение доли числа

Для ознакомления с решением задач на нахождение доли числа учителю полезно сначала провести практическую работу.

Учащимся раздаются полоски бумаги длиной 12 см, разделить ее (перегибанием) на 2 равные части. Измерить половину полоски.

- Сколько сантиметров содержится во всей полоске? (12 см.) А в половине ее? (Измерим - 6 см.) Разделите полоску на 4 равные части. Чему равна длина одной четвертой части полоски? Как это узнать без измерения? (Нужно 12 см разделить на 4, получится 3 см.) Почему нужно 12 разделить на 4? (Потому, что для получения одной четвертой доли полоску разделили на четыре равные части.) Проверим результат измерением. Запишем решение: 12:4=3 (см).

При решении других задач достаточно воспользоваться чертежом: число изобразить отрезком, который учащиеся делят на заданное число равных частей, обозначают долю, после чего выполняют решение устно или письменно.

В дальнейшем задачи на нахождение доли числа встречаются в задачах, в упражнениях типа: "Найди 1/4 от 1 м, 1/10 от 1 дм", "Сколько часов составляет 1/2, 1/4 сутки" и т.п.

Нахождение числа по его доле

При ознакомлении с задачами на нахождение числа по его доле, учителю сначала полезно провести практическую работу:

- Покажите свои полоски бумаги (полоски должны быть заготовлены заранее так, чтобы длина их была различной, но выражалась четным числом сантиметров). Покажите 1/2 полоски. Измерьте половину полоски. Чему равна длина 1/2 полоски? (Спросить у нескольких учеников.) Теперь подумайте, чему равна длина всей полоски. Как это узнать без измерения?

Снова спрашивается несколько учеников:

- Чему была равна 1/2 твоей полоски? Какова длина всей полоски? Как ты это узнал? Почему нужно было длину половины полоски умножить на 2? (Потому что во всей полоске содержится 2 раза постольку сантиметров, сколько их в половине.) Проверьте измерением.

После этого задачу "Длина 1/3 полоски равно 4 см. Какова длина всей полоски?" решают, используя чертеж. Изобразим отрезок, показывающий одну третью часть полоски. (Чертят отрезок длиной 4 см.) Какую часть всей полоски показывает этот отрезок? (1/3) Как нарисовать весь отрезок? (Взять 3 раза по 4 см.) Почему? (4 см - это полоски, а во всей полоске будет три трети.) Начертите. Какой длины была полоска? (12 см.) Как

узнали? (4�3=12 (см).)

При решении таких задач и упражнений вида: "Найди число, если 1/4 его равна 8" учителю надо научить учащихся сначала дать рассуждение: "четвертая часть числа (отрезка) равна 8, а само число (отрезок) будет в 4 раза больше, поэтому 8 умножим на 4 и получим 32" и только после этого записать решение. Этот образец рассуждения учащиеся должны запомнить. В противном случае они, задачи и упражнения на нахождение числа по его доле, будут продолжать решать делением. Это связано с тем, что в их памяти сохранилось мнение, что "доля - это делить" и поэтому они ошибочно полагают: " - это доля, значит 8 делим на 4".

Ознакомление с дробями

Образование дробей, как и образование долей рассматривается с помощью наглядных пособий.

Разделите круг на 4 равные части. Как назвать каждую такую часть? (Одна четвертая круга.) Покажите две четвертые доли. Вы получили дробь - две четвертых. Это записывают так � 2/4. Сколькими частями вы покажете дробь 3/4? (Три четвертые доли.) Мы записали дроби 2/4, 3/4. Что показывает число 4? (Число 4 показывает, на сколько равных частей разделили круг.) А что показывают числа 2 и 3? (Сколько таких равных частей взяли.) Дроби 2/4 и 3/4 читают так: две четвертых, три четвертых. А теперь прочитайте упражнение учебника и объясните, как получены указанные дроби (в учебнике круги иллюстрируют дроби 1/8, 5/8, 3/8, 2/3).

После ознакомления с дробями учащиеся выполняют упражнения:

1) на объяснение образования дробей по готовому рисунку;

2) на запись дробей по готовому рисунку;

3) изображение дробей с помощью отрезка (например, покажи 3/5 отрезка);

4) на сравнение дробей в основном по изображению равных прямоугольников.

Учащимся предлагается начертить 4 одинаковых прямоугольника (рис.117):

Изучение числовых равенств и неравенств - student2.ru

Рис. 117

В первом целом прямоугольнике запишем число 1. Второй прямоугольник разделите на 2 равные части и запишите полученные доли. Сколько вторых долей в целом прямоугольнике? Третий прямоугольник разделите на 4 равные части и запишите полученные доли. Сколько четвертых долей в целом прямоугольнике? Сколько четвертых долей в половине? Что больше: одна вторая или одна четвертая? Запишем так: (1/2 > 1/4). Какие числа знаки поставим, чтобы следующие равенства и неравенства были верными: 1/2 = □ /4, 3/4 * 1/2, 2/4 * 3/4?

Следующий прямоугольник делится на 8 равных частей и учащиеся отвечают на аналогичные вопросы.

Сравнение дробей можно иллюстрировать отрезками. Например, при сравнении дробей 2/5 и 3/4 ученик выполняет чертеж (рис.118):

Изучение числовых равенств и неравенств - student2.ru

Рис. 118

рассуждая при этом так: "на отрезке покажу 2/5 и 3/4: для этого его разделю на 5 равных частей и возьму 2 части; такой же отрезок разделю на 4 равные части и возьму 3 части. Вижу, что второй от резок, отмеченный дугой, длиннее и поэтому 3/4 > 2/5.

Наши рекомендации