Экзаменационные билеты по высшей математике
Экзаменационные билеты по высшей математике
Понятие производной, её геометрический смысл. Уравнения касательной и нормали к графику функции.
1.Производной функции f(x) (f'(x0)) в точке x0 называется число, к которому стремится разностное отношение , стремящееся к нулю.
-Производная функции, заданной на некотором интервале (a;b), в некоторой точке Х этого интервала называют предел отношения приращения функции к приращению аргумента.
2.Геометрический смысл производной.
Производная в точке x0 равна угловому коэффициенту касательной к графику функции y=f(x) в этой точке.
Касательная к графику- предельное положение секущей.
3.Уравнение касательной к графику функции y=f(x) в точке x0 :
Касательная— это прямая, которая касается графика функции в одной точке и все точки которой находятся на наименьшем расстоянии от этого графика функции, уравнение касательной запишется таким образом.
4. Уравнение нормали графика
Нормаль – это перпендикулярная к касательной прямая, проходящая через точку касания
Физический смысл производной. Скорость материальной точки при непрерывном движении.
S”(t)=v’(t)=a(t) |
Так как на малом участке пути ΔS скорость меняется незначительно,то допустим, что она постоянна=>.
Мгновенная cкорость материальной точки.
При времени t.
Левая и правая производные(односторонние). Дифференцируемость.
Левой и правой производной функциив точке х0, называется правое(левое) предельное значение.
При условии, что оно существует.
Если функция в точке х0 имеет производную, то она в этой точке имеет левую и правую производные, совпадающие между собой.
Так же естьфункция, которая имеет правую и левую производные, но не имеет производную точки.
Например.f(x)= |х|: в точке х=0
правая
левая
Но не имеет в точке х=0 производной, т.к односторонние пределы различны.
Дифференцируемость
Теорема. Если функция в точке имеет производную, то она непрерывна в этой точке.
=> => => функция непрерывна
Функциядифференцированнаяесли у неё существуетпроизводная.
дифференцируемость => непрерывность (обратное утверждение не верно)
Функция гладкая, если производная есть на всей области определения.
50. Таблица производных. Свойства производных.
a>0, a≠1 ≠1 |
1.
2.
3.
4.
Свойства дифференцируемых функций. Теоремы Ролля, Коши, Лангранджа.
Теорема №1 (Ролль)
Пусть функция f(x) непрерывна на отрезке [a;b],дифференцируема на интервале (a;b) и на концах принимает равные значения (f(a)=f(b)), тогда существует точка c∈(a;b),в которой производная функции равна 0 (f’(c)=0).
Доказательство.
По т. Вейерштрасса (Если функция f(x) непрерывна на отрезке [a,b], то она достигает на нем своей точной верхней и нижней грани (т.е. наибольшего и наименьшего значения).)
Если m=M, то f(x)=const, тогда f’(x)=0.
Пусть m≠M, хотя бы одно из значений внутри отрезка ∃ c ∈(a;b); f(c)=M
В силу теоремы верно неравенство f(c+∆x)-f(c) = 0, а ∆x→0,то
Теорема №2 (Коши)
Пусть функции f (x) и g(x) непрерывны на [a; b] и дифференцируемы на (a; b). Пусть, кроме того, во всех точках интервала (a; b) функция g(x) имеет ненулевую производную g ' (x) ≠ 0. Тогда существует точка c ∈ (a; b), такая, что справедлива формула.
Отношение приращений 2 функций на отрезке равно отношению значений их производных.
Доказательство.
F(a)=0; F(b)=0=> удовлетворяет т.Ролля.
∃ с ∈(a;b) F'(c)=0
/
/
Теорема №3 (Лагранж)
Пусть функция f(x) непрерывна на отрезке [a;b],дифференцируема на интервале (a;b) и на концах принимает равные значения (f(a)=f(b)), то найдётся хотя бы точка c∈(a;b) такая, что выполняет равенство:
Доказательство.применим т.Коши
(f(b) - f(a))’=f’(c), a (b-a)’=1
Ролль |
Коши |
53. Раскрытие неопределённостей. ПравилоЛопиталя.
- неопределённости.
Можно применять неоднократно.
Для раскрытия неопределенностей надо заменить предел отношения двух функций пределом отношения их производных. Если окажется, что отношение производных имеет конечный предел, то к этому же пределу стремится и отношение данных функций.
54. Признаки монотонности функции.
Строго монотонная -когда постоянно воз(убыв),
Монотонная -когда не постоянно воз(убыв).
Доказательство.
Экзаменационные билеты по высшей математике