Этапы корреляционного анализа
Практическая реализация корреляционного анализа включает следующие этапы:
а) постановка задачи и выбор признаков;
б) сбор информации и ее первичная обработка (группировки, исключение аномальных наблюдений, проверка нормальности одномерного распределения);
в) предварительная характеристика взаимосвязей (аналитические группировки, графики);
г) устранение мультиколлинеарности (взаимозависимости факторов) и уточнение набора показателей путем расчета парных коэффициентов корреляции;
д) исследование факторной зависимости и проверка ее значимости;
е) оценка результатов анализа и подготовка рекомендаций по их практическому использованию[3].
Коэффициенты корреляции
Коэффициенты корреляции является общепринятой в математической статистике характеристикой связи между двумя случайными величинами. Коэффициент корреляции - показатель степени взаимозависимости, статистической связи двух переменных; изменяется в пределах от -1 до +1. Значение коэффициента корреляции 0 указывает на возможное отсутствие зависимости, значение +1 свидетельствует о согласованности переменных.
Различают следующие коэффициенты корреляции:
- дихотомический - показатель связи признаков (переменных) измеряемых по дихотомическим шкалам наименований;
- Пирсона (Pearson product-moment correlation) - коэффициент корреляции, используемый для континуальных переменных;
- ранговой корреляции Спирмена (Spearmen's rank-order correlation) - коэффициент корреляции для переменных, измеренных в порядковых (ранговых) шкалах;
- точечно-бисериальной корреляции (point-biserial correlation) - коэффициент корреляции, применяемый в случае анализа отношения переменных, одна из которых измерена в континуальной шкале, а другая - в строго дихотомической шкале наименований;
- j - коэффициент корреляции, используемый в случае, если обе переменные измерены в дихотомической шкале наименований.
- тетрахорический (четырехпольный) (tetrachoric) - коэффициент корреляции, используемый в случае, если обе переменные измерены в континуальных шкалах[4].
Линейная связь между переменными Xi и Xj оценивается коэффициентом корреляции:
,
где Xi и Xj – исследуемые переменные; mXi и mXj – математические ожидания переменных; σX и σX – дисперсии переменных.
Выборочный коэффициент корреляции определяют по формуле:
,
или по преобразованной формуле:
,
где i =1, 2, ..., n, j = 1, 2, ..., m, u = 1, 2, ..., N; N – число опытов(объем выборки); xi, xj – оценки математических ожиданий; SXi, SXj – оценки среднеквадратических отклонений.
Только при совместной нормальной распределенности исследуемых случайных величин Xi и Xj коэффициент корреляции имеет определенный смысл связи между переменными. В противном случае коэффициент корреляции может только косвенно характеризовать эту связь[5].