IV. Разложение элементарных функций в ряд Маклорена.
Для приложений важно уметь данную функцию разлагать в степенной ряд, т.е. функцию представлять в виде суммы степенного ряда.
Рядом Тейлора для функции называется степенной ряд вида
.
Если , то получим частный случай ряда Тейлора
,
который называется рядом Маклорена.
Степенной ряд внутри его промежутка сходимости можно почленно дифференцировать и интегрировать сколько угодно раз, причем полученные ряды имеют тот же промежуток сходимости, что и исходный ряд.
Два степенных ряда можно почленно складывать и умножать по правилам сложения и умножения многочленов. При этом промежуток сходимости полученного нового ряда совпадает с общей частью промежутков сходимости исходных рядов.
Для разложения функции в ряд Маклорена необходимо:
Вычислить значения функции и ее последовательных производных в точке , т.е. , , ,…, ;
Составить ряд Маклорена, подставив значения функции и ее последовательных производных в формулу ряда Маклорена;
Найти промежуток сходимости полученного ряда по формуле
, .
Таблица, содержащая разложения в ряд Маклорена некоторых элементных функций:
.
.
.
.
.
.
Пример 1. Разложить в ряд Маклорена функцию .
Решение. Так как , то, заменяя на в разложении , получим:
, .
Пример 2. Выписать ряд Маклорена функции .
Решение. Так как , то воспользовавшись формулой , в которой заменим на , получим:
,
или
,
если
, т.е. .
Пример 3. Разложить в ряд Маклорена функцию .
Решение. Воспользуемся формулой . Так как
, то заменив на получим:
, или
,
где , т.е. .
V. Практические задания для самоконтроля студентов.
При помощи признака сравнения рядов установить сходимость
или расходимость рядов:
.
.
.
.
.
Исследовать по признаку Даламбера сходимость рядов:
.
.
.
.
.
Исследовать на сходимость (абсолютную или условную) знакочередующийся ряд:
.;
.;
.;
.;
.
Найти промежутки сходимости нижеследующих рядов и выяснить вопрос об их сходимости на концах промежутков сходимости:
;
;
;
;
.
Используя разложения в ряд Маклорена функции , , , , разложить степенные ряды функции:
.
.
.
.
.
VI. Ответы
I.
- сходится;
- расходится;
- сходится;
- сходится;
- расходится;
- сходится;
- сходится;
- расходится;
- сходится;
- сходится.
II.
- cходится абсолютно;
- cходится абсолютно;
- cходится условно;
- cходится условно;
- cходится абсолютно.
III.
- ;
- ;
- ;
- ;
- .
IV.
;
;
;
;
VII. Историческая справка.
Решение многих задач сводится к вычислению значений функций и интегралов или к решению дифференциальных уравнений, содержащих производные или дифференциалы неизвестных функций.
Однако точное выполнение указанных математических операций во многих случаях оказывается весьма затруднительным или невозможным. В этих случаях можно получить приближенное решение многих задач с любой желаемой точностью при помощи рядов.
Ряды представляют собой простой и совершенный инструмент математического анализа для приближенного вычисления функций, интегралов и решений дифференциальных уравнений.
Теория рядов создавалась в тесной связи с теорией приближенного представления функций в виде многочленов. Впервые это сделал И. Ньютон (1642 – 1727). в 1676г. В его письме к секретарю Лондонского Королевского Общества появилась формула:
,
которую мы знаем как формулу бинома Ньютона.
Здесь мы видим функцию , представленную в виде многочлена. Но если число не является натуральным, в правой части равенства получается не полином, а бесконечная сумма слагаемых, то есть ряд.
Развивая идею Ньютона, английский математик Брук Тейлор (1685 – 1731) в 1715г. доказал, что любой функции, имеющей в точке производные всех порядков, можно сопоставить ряд:
.
Мы не можем пока поставить знак равенства между функцией , принимающей конечное значение для любого значения , и стоящим справа функциональным рядом.
Для того, чтобы вместо знака “ ” можно было поставить знак равенства, необходимо провести некоторые дополнительные рассуждения, связанные именно с бесконечностью числа слагаемых в правой части равенства и касающиеся области сходимости ряда.
При формула Тейлора принимает вид, в котором называется формулой Маклорена:
.
Колин Маклорен (1698 – 1746), ученик Ньютона, в работе “Трактат о флюксиях” (1742) установил, что степенной ряд, выражающий аналитическую функцию, - единственный, и это будет ряд Тейлора, порожденный такой функцией. В формуле бинома Ньютона коэффициенты при степенях представляют собой значения , где .
Итак, ряды возникли в XVIII в. как способ представления функций, допускающих бесконечное дифференцирование. Однако функция, представляемая рядом, не называлась его суммой, и вообще в то время не было еще определено, что такое сумма числового или функционального ряда, были только попытки ввести это понятие.
Например, Л. Эйлер (1707-1783), выписав для функции соответствующий ей степенной ряд, придавал переменной конкретное значение . Получался числовой ряд. Суммой этого ряда Эйлер cчитал значение исходной функции в точке . Но это не всегда верно.
О том, что расходящийся ряд не имеет суммы, ученые стали догадываться только в XIX в., хотя в XVIII в. многие, и прежде всего Л. Эйлер, много работали над понятиями сходимости и расходимости. Эйлер называл ряд сходящимся, если его общий член стремится к нулю при возрастании .
В теории расходящихся рядов Эйлер получил немало существенных результатов, однако результаты эти долго не находили применения. Еще в 1826г. Н.Г. Абель (1802 – 1829) называл расходящиеся ряды “дьявольским измышлением”. Результаты Эйлера нашли обоснование лишь в конце XIX в.
В формировании понятия суммы сходящегося ряда большую роль сыграл французский ученый О.Л. Коши (1789 – 1857); он сделал чрезвычайно много не только в теории рядов, но и теории пределов, в разработке самого понятия предела. В 1826г. Коши заявил, что расходящийся ряд не имеет суммы.
В 1768г. французский математик и философ Ж.Л. Д’Аламбер исследовал отношение последующего члена к предыдущему в биномиальном ряде и показал, что если это отношение по модулю меньше единицы, то ряд сходится. Коши в 1821г. доказал теорему, излагающую в общем виде признак сходимости знакоположительных рядов, называемых теперь признаком Д’Аламбера.
Для исследования сходимости знакочередующихся рядов используется признак Лейбница.
Г.В. Лейбниц (1646 – 1716), великий немецкий математик и философ, наряду с И. Ньютоном является основоположником дифференциального и интегрального исчисления.
Список литературы:
Основная:
- Богомолов Н.В., Практические занятия по математике. М., “Высшая школа”, 1990 – 495 с.;
- Тарасов Н.П., Курс высшей математики для техникумов. М., “Наука”, 1971 – 448 с.;
- Зайцев И.Л., Курс высшей математики для техникумов. М., государственное издательство техникумов – теоретической литературы, 1957 - 339 с.;
- Письменный Д.Т., Курс лекций по высшей математике. М., “Айрис Пресс”, 2005, часть 2 – 256 с.;
- Выгодский М.Я., Справочник по высшей математике. М., “Наука”, 1975 – 872 с.;