Аппроксимация ВАХ в окрестностях рабочей точки
На практике часто приходится иметь дело с рабочей областью ВАХ настолько узкой, что можно считать, что изменение токов и напряжений происходит только в окрестностях некоторой рабочей точки. В таких случаях нет необходимости аппроксимировать ВАХ в широком диапазоне токов и напряжений, а достаточно ограничиться аппроксимацией лишь в окрестностях точки (рис.21.)
Пусть ток и напряжение в рабочей точке равны , . Значение тока при изменении напряжения на можно представить в виде ряда Тейлора:
Рис.21. Аппроксимация в окрестностях
рабочей точки
, (24)
где – значение тока в рабочей точке;
− первая и вторая производная, определяемая с помощью формул численного дифференцирования:
; (25)
. (26)
Вводя обозначения:
, , , (27)
уравнение (24) можно представить в виде:
(28)
Как правило, при аппроксимации ВАХ нелинейных резистивных элементов в окрестностях рабочей точки используются полиномы низких степеней и весьма часто полиномом первой степени:
. (29)
Последнее уравнение представляет уравнение прямой линии. Если ВАХ задана графически, то для определения коэффициента достаточно провести касательную к ВАХ и по уравнению:
. (30)
В машинном анализе наибольшее распространение получила сплайн аппроксимация, т.е. аппроксимация полиномом второй степени:
. (31)
МАГНИТНЫЕ ЦЕПИ
Основные понятия
В современных электронных устройствах для увеличения магнитного потока в определенной части пространства используют ферромагнитные материалы. Устройства или их совокупность, содержащие ферромагнитные материалы, предназначенные для создания с помощью намагничивающей силы магнитного потока, называют магнитной цепью.
Магнитное поле характеризуется вектором магнитной индукции . По принципу суперпозиции внутри вещества, магнитное поле складывается из внешнего поля и наведенного им (по гипотезе Ампера):
, (31)
где - магнитная индукция внутри вещества;
- магнитная индукция внешнего поля в вакууме;
- магнитная индукция наведенного поля, определяется магнитными свойствами вещества.
Если внешнее поле создается бесконечной катушкой, витки которой навиты вплотную друг к другу, то согласно закону Био-Савара:
, (32)
Рис. 22. Катушка с сердечником
где - алгебраическая сумма токов, пронизывающие поверхность, ограниченные контуром ;
- циркуляция вектора магнитной индукции по замкнутому контору;
- магнитная постоянна [Гн/м].
Магнитное поле бесконечной катушки однородное, поэтому выражение (32) можно записать:
, (33)
где – число витков катушки, уложенных на участке длинной ;
- величина тока в катушке;
- намагничивающий ток.
Введем понятие вектора напряженности магнитного поля , который не зависит от свойств среды (вещества), и определяется только токами в проводах:
. (34)
Намагниченность вещества является результатом действия внешнего магнитного поля:
, (35)
где - магнитная восприимчивость вещества.
Учитывая (35), выражение (31) можно переписать в виде:
, (36)
где − относительная магнитная проницаемость ;
− абсолютная магнитная проницаемость.
Магнитная проницаемость зависит от строения вещества и в общем случае изменяется с изменением , т.е. зависимость является нелинейной. Эта зависимость не имеет точного аналитического выражения и поэтому ее изображают для каждого ферромагнитного материала в виде кривой намагничивания, определяемой опытным путем.
Рис. 23. Кривая намагничивания ферромагнитного материала
Если изменять от до , то после нескольких циклов перемагничивания можно получить замкнутую петлю гистерезиса (рис.23). На этом рисунке – остаточная индукция, – коэрцитивная сила.Основной кривой намагниченности называют геометрическое место вершин замкнутых симметричных петель гистерезиса, снятых при различных (см.рис.23 -пунктирная кривая).