Точность и достоверность статистической оценки показателей надежности

Оглавление

Лабораторная работа №1. 3

Теоретические основы.. 3

Последовательность выполнения работы.. 7

Контрольные вопросы.. 9

Лабораторная работа №2. 10

Теоретические основы.. 10

1. Экспоненциальное распределение. 10

2. Классическое нормальное распределение. 12

3. Усеченное нормальное распределение. 13

4. Распределение Вейбулла. 15

Последовательность выполнения работы.. 16

Контрольные вопросы.. 22

Лабораторная работа №3. 23

Теоретические основы.. 23

Порядок выполнения работы.. 27

Контрольные вопросы.. 28

Лабораторная работа №4. 29

Теоретические основы.. 29

Последовательность выполнения работы.. 37

Контрольные вопросы.. 42

Лабораторная работа № 5. 43

Последовательность выполнения работы.. 43

Контрольные вопросы.. 46


Лабораторная работа №1

«Интервальная оценка показателей безотказности»

Теоретические основы

Последовательность выполнения работы

Исходная информация:

γ- доверительная вероятность;

N- число объектов выборки;

L - число отказавших объектов.

Вычисление вспомогательных величин:

k1=2L+2

k1=2L- число степеней свободы для вычисления квантилей χ2 распределения;

Вычисляем квантили χ1 и χ2 распределения χ2 для (γ, k1) и (1-γ,k2) используя функции qchisq(MathCAD), hi2inv (MathLAB), ХИ2ОБР (Excel)

Точечная оценка вероятности безотказной работы:

Точность и достоверность статистической оценки показателей надежности - student2.ru

Вычисление нижней интервальной оценки вероятности безотказной работы:

Точность и достоверность статистической оценки показателей надежности - student2.ru

Вычисление верхней интервальной оценки вероятности безотказной работы:

Точность и достоверность статистической оценки показателей надежности - student2.ru

Вычисление нижней интервальной оценки вероятности безотказной работы при числе отказавших объектов равном нулю:

Точность и достоверность статистической оценки показателей надежности - student2.ru

Исследовать:

1. Влияние величины доверительной вероятности на интервал гарантированной оценки вероятности безотказной работы.

2. Влияние числа отказов на размер области гарантированной оценки вероятности безотказной работы.

3. Рассмотреть при различной доверительной вероятности частный случай, когда число отказов L=0.

Теоретические основы

Распределение Вейбулла

Для описания времен отказов образцов, поставленных на испытание, таких как электронные устройства, лампы, подшипники, традиционно используется распределение Вейбулла.

Распределение Вейбулла определено для положительных значений параметров a, b и θ, которые называются соответственно параметрами масштаба, формы и положения.

Плотность распределения Вейбулла:

Точность и достоверность статистической оценки показателей надежности - student2.ru

θ < x, a > 0, b > 0

Вероятность отказа вычисляется с помощью функции распределения Вейбулла по формуле:

Точность и достоверность статистической оценки показателей надежности - student2.ru

Вероятность безотказной работы вычисляется по формуле:

Точность и достоверность статистической оценки показателей надежности - student2.ru

Функция интенсивности отказов. Описывает вероятность отказа в течение малого промежутка времени при условии, что до этого момента отказа не произошло. На основе распределения Вейбулла получается следующего вида:

Точность и достоверность статистической оценки показателей надежности - student2.ru

Случайные числа w для распределения Вейбулла получаются из случайных чисел наработки t для согласно формуле Точность и достоверность статистической оценки показателей надежности - student2.ru .

Лабораторная работа №3

«Определение закона надёжности невосстанавливаемых объектов

Теоретические основы

Существует большой класс технических объектов, статистическая информация о надежности которых по определению не может быть полной и достаточно определенной. Это, прежде всего, высоконадежные и малосерийные объекты, а также уникальные объекты, для которых нет прототипов (аналогов). Подразумевается, что объекты, для которых решается задача оценки надежности, созданы по единой технологии.

За длительный период наблюдения такие объекты могут иметь ограниченное количество отказов. Наработки неотказавших за этот же период объектов являются дополнительной (и весьма ценной) информацией о надежности всей контролируемой совокупности объектов. Эти наработки называют цензурирующими.

Цензурированием называется событие, приводящее к прекращению наблюдений за изделием до наступления системного события либо к свершению события в неизвестный момент времени в пределах некоторого интервала. Цензурированной выборкой называется выборка, элементами которой являются полные наработки и наработки до цензурирования (неполные наработки) или только значения наработки до цензурирования. Полной наработкой является наработка изделия от начала некоторого этапа его эксплуатации до системного события, например, наработка до отказа. Неполная наработка характеризует наработку изделия: от начала эксплуатации до фиксированного момента времени, но до наступления системного события; от некоторого произвольного момента, не связанного с системным событием, до системного события или до конкретного момента времени.

Интервал, в котором произошло или произойдет системное событие, причем точное значение наработки до системного события неизвестно, называется интервалом неопределенности. Этот интервал может быть ограниченным:

· слева (цензурирование слева). Наблюдения за объектами прекращаются в какой-то момент времени. К моменту окончания наблюдений часть объектов отказала. Другая часть продолжает работать, причем неизвестно, как долго эти объекты проработают без отказа;

· справа (цензурирование справа). К началу наблюдений объекты уже проработали некоторое неизвестное время без отказа. Отказавшие к моменту начала наблюдений объекты во внимание не принимаются;

· слева и справа (цензурирование интервалом). Цензурирование интервалом является наиболее общим случаем цензурирования.

Различают однократно и многократно цензурированные выборки. К однократно цензурированным относят, в частности, цензурированные слева выборки, содержащие полные и неполные наработки, причем все неполные наработки равны друг другу. Если у объектов наблюдения моменты или интервалы цензурирования различаются, то такие выборки являются многократно цензурированными. Применительно к задачам оценки надежности по результатам наблюдений в процессе эксплуатации цензурирование обычно связано с ограниченностью интервалов наблюдения.

Существует несколько типовых вариантов (планов) наблюдений. Краткое обозначение плана включает три элемента. Первый элемент характеризует количество объектов N, предназначенных для наблюдений. Второй – действия с отказавшими объектами: U – отсутствие замены или восстановления отказавших объектов; R – замена отказавших объектов; M – восстановление отказавших объектов. Третий элемент (одна или две буквы) определяет признак окончания наблюдений: T – наблюдения заканчиваются по истечении фиксированного интервала времени; r – наблюдения заканчиваются по достижении фиксированного количества реализаций (отказов, восстановлений); z – наблюдения заканчиваются при наработке каждого объекта, равной ti.

План [NUT] указывает, что под наблюдением находится N объектов, отказавшие объекты не заменяются и не восстанавливаются U, наблюдения заканчиваются по истечении заданного интервала времени T (однократно цензурированная выборка). В отличие от [NUT] план [NUz] означает, что наблюдение за конкретным объектом заканчивается при возникновении его отказа или при достижении конкретного значения наработки (многократно цензурированная выборка). План [NUT] соответствует цензурированию типа 1, при этом заранее фиксируется время проведения наблюдений, число событий представляет собой случайную величину. При цензурировании по плану [NUr] или при цензурировании типа 2 заранее задается число событий (доля событий), после наступления которых наблюдения прекращаются, время наблюдения заранее не фиксируется, т.е. оно случайно.

Выбор конкретного плана зависит от целей исследования. Далее рассматриваются планы типа [… U …]. Обработка результатов по плану типа [… R …] сводится к предыдущему типу путем переноса начала наблюдений каждого нового объекта к некоторому условному началу испытаний всех объектов. Планы типа [… M …] можно рассматривать как планы типа [… U …], если каждую наработку между отказами трактовать как наработку некоторого невосстанавливаемого объекта (полное восстановление ресурса объекта после отказа). Очевидно, что план типа [NUN] соответствует полной выборке.

Оценка надежности проводится с начала эксплуатации на некоторый (текущий) момент или за определенный интервал времени. В первом случае имеет место цензурирование слева по текущему моменту времени. Для невосстанавливаемых объектов часть из них к этому моменту времени может отказать, а другая часть продолжает работать, что соответствует плану наблюдения [NUT]. Значения наработок исправных объектов неизвестны, но очевидно, что они превышают интервал наблюдения. Во втором случае оценка надежности связана с цензурированием выборки справа (продолжительность работы средств точно неизвестна) и слева, часть средств может отказать к моменту начала наблюдения и не учитывается на текущем интервале, другая часть может отказать на текущем интервале, а третья продолжит работу и по завершении периода наблюдения. В рассмотренных вариантах цензурирование осуществляется по фиксированным моментам времени, и число наблюдений в выборке является случайным.

В некоторых случаях цензурирование осуществляется по конкретным событиям, например, при определенном числе отказов объектов, что характерно при проведении испытаний однотипных изделий в интересах определения показателей надежности, планы типа [NUr]. В планах наблюдения [NU(r,T)] прекращение наблюдений происходит после отказа r объектов или по достижении момента времени Т в зависимости от того, какое из событий происходит ранее. В таких случаях объем выборки не является случайным, случайна продолжительность наблюдений.

Итак, формируемые в ходе эксплуатации выборки по надежности могут иметь: однократное цензурирование слева (например, период наблюдения от начала эксплуатации до текущего момента времени); цензурирование интервалом (период наблюдения определяется календарными сроками); многократное цензурирование слева; многократное цензурирование интервалом. Левая и правая границы цензурирования при этом определяются моментами времени или случайными событиями, например, моментом отказа какого-либо средства.

Для цензурированных выборок необходимо применять свои методы оценки показателей, проверки статистических гипотез. Теория обработки цензурированных выборок сложнее традиционных методов математической статистики и далека от своего завершения.

Следует отметить, что практически все выборки результатов наблюдения за функционированием объектов так или иначе цензурированы. Однако цензурирование следует учитывать только в тех случаях, когда интервал наблюдения соизмерим с наработкой на системное событие и количество неполных наблюдений составляет значительный процент в общем объеме.

Порядок выполнения работы

Исходная информация:

Точность и достоверность статистической оценки показателей надежности - student2.ru

М - матрица случайноцензурированных выборок наработок объектов до отказов и до приостановки наблюдения;

- второй столбец матрицы - это индикаторный массив, единица ставится в случае, если соответствующая наработка является наработкой объекта до отказа, в противном случае в индикаторном массиве ставится нуль.

Используя матрицу выборок, строим статистическую функцию распределения

Точность и достоверность статистической оценки показателей надежности - student2.ru

где N–количество объектов;

Fi-1– предыдущее значение функции распределения;

Точность и достоверность статистической оценки показателей надежности - student2.ru – значение индикаторного массива.

Сглаживание рассчитанной функции распределения пометоду скользящей медианы (функция medsmoth MathCAD)

Точность и достоверность статистической оценки показателей надежности - student2.ru

и простейшим способом

Точность и достоверность статистической оценки показателей надежности - student2.ru

Построить графики функций F,F1,F2.

Сделать выводы

1. Что такое восстановленная функция распределения наработки до отказа?

2. Вероятность того, что объект проработает время большее, чем ... чравна ....

3. Вероятность того, что объект откажет при наработке не более .... ч равна ....

4. Каким образом получить более полный анализ показателей надёжности?

Контрольные вопросы

1. Что такое цензурированная выборка наработок объекта?

2. Какие виды цензурирований встречаются на практике?

3. Как влияет цензурирование на показатели надёжности технических объектов?

4. Что такое функция надёжности?

5. Что такое функция ненадёжности?

6. Изобразить график плотности распределения наработок до отказа при нормальном законе надёжности?

Лабораторная работа №4

«Расчёт функции готовности и коэффициента готовности энергоблока»

Теоретические основы

При расчете показателей надежности восстанавливаемых объектов и систем наиболее распространено допущение:

  • экспоненциальное распределение наработки между отказами;
  • экспоненциальное распределение времени восстановления.

Допущение во многом справедливо, поскольку во-первых, экспоненциальное распределение наработки описывает функционирование системы на участке нормальной эксплуатации, во-вторых, экспоненциальное распределение описывает процесс без «предыстории».

Применение экспоненциального распределения для описания процесса восстановления позволяет при ординарных независимых отказах представить анализируемые системы в виде марковских систем.

При экспоненциальном распределении наработки между отказами и времени восстановления, для расчета надежности используют метод дифференциальных уравнений для вероятностей состояний (уравнений Колмогорова-Чепмена).

Случайный процесс в какой либо физической системе S, называется марковским, если он обладает следующим свойством: для любого момента t0 вероятность состояния системы в будущем (t > t0) зависит только от состояния в настоящем (t = t0) и не зависит от того, когда и каким образом система пришла в это состояние (иначе: при фиксированном настоящем будущее не зависит от предыстории процесса - прошлого).

t < t0 t > t0

Точность и достоверность статистической оценки показателей надежности - student2.ru

Для марковского процесса «будущее» зависит от «прошлого» только через «настоящее», т. е. будущее протекание процесса зависит только от тех прошедших событий, которые повлияли на состояние процесса в настоящий момент.

Марковский процесс, как процесс без последействия, не означает полной независимости от прошлого, поскольку оно проявляется в настоящем.

При использовании метода, в общем случае, для системы S, необходимо иметь математическую модель в виде множества состояний системы S1 , S2 , … , Sn , в которых она может находиться при отказах и восстановлениях элементов.

Для рассмотрения принципа составления модели введены допущения:

- отказавшие элементы системы (или сам рассматриваемый объект) немедленно восстанавливаются (начало восстановления совпадает с моментом отказа);

- отсутствуют ограничения на число восстановлений;

- если все потоки событий, переводящих систему (объект) из состояния в состояние, являются пуассоновскими (простейшими), то случайный процесс переходов будет марковским процессом с непрерывным временем и дискретными состояниями S1 , S2 , … , Sn .

Основные правила составления модели:

1. Математическую модель изображают в виде графа состояний.

Элементы графа:

а) кружки (вершины графа S1 , S2 , … , Sn ) – возможные состояния системы S, возникающие при отказах элементов;

б) стрелки – возможные направления переходов из одного состояния Si в другое Sj .

Над/под стрелками указываются интенсивности переходов.

Примеры графа:

Точность и достоверность статистической оценки показателей надежности - student2.ru

S0 – работоспособное состояние;

S1 – состояние отказа.

«Петлей» обозначаются задержки в том или ином состоянии S0 и S1 соответствующие:

- исправное состояние продолжается;

- состояние отказа продолжается (в дальнейшем петли на графах не рассматриваем).

Граф состояний отражает конечное (дискретное) число возможных состояний системы S1 , S2 , … , Sn . Каждая из вершин графа соответствует одному из состояний.

2. Для описания случайного процесса перехода состояний (отказ/ восстановление) применяют вероятности состояний

P1(t), P2(t), … , Pi(t), … , Pn(t),

где Pi(t) – вероятность нахождения системы в момент t в i-м состоянии, т. е.

Pi(t) = P{S(t) = Si}.

Очевидно, что для любого t

Точность и достоверность статистической оценки показателей надежности - student2.ru

(нормировочное условие, поскольку иных состояний, кроме S1 , S2 , … , Sn нет).

3. По графу состояний составляется система обыкновенных дифференциальных уравнений первого порядка (уравнений Колмогорова-Чепмена), имеющих вид:

Точность и достоверность статистической оценки показателей надежности - student2.ru

Точность и достоверность статистической оценки показателей надежности - student2.ru

В общем случае, интенсивности потоков Точность и достоверность статистической оценки показателей надежности - student2.ru ij и Точность и достоверность статистической оценки показателей надежности - student2.ru ij могут зависеть от времени t.

При составлении дифференциальных уравнений пользуются простым мнемоническим правилом:

а) в левой части – производная по времени t от Pi(t);

б) число членов в правой части равно числу стрелок, соединяющих рассматриваемое состояние с другими состояниями;

в) каждый член правой части равен произведению интенсивности перехода на вероятность того состояния, из которого выходит стрелка;

г) знак произведения положителен, если стрелка входит (направлена острием) в рассматриваемое состояние, и отрицателен, если стрелка выходит из него.

Проверкой правильности составления уравнений является равенство нулю суммы правых частей уравнений.

4. Чтобы решить систему дифференциальных уравнений для вероятностей состояний P1(t), Pi(t), … , Pn(t) необходимо задать начальное значение вероятностей

P1(0), Pi(0), … , Pn(0), при t = 0,

сумма которых равна единице:

Точность и достоверность статистической оценки показателей надежности - student2.ru

Если в начальный момент t = 0 состояние системы известно, например, S(t=0) = Si, то Pi(0) = 1, а остальные равны нулю.

В качестве примера вычисления показателей надежности, рассмотрен восстанавливаемый объект, у которого поток отказов простейший (пуассоновский) с параметром потока

Точность и достоверность статистической оценки показателей надежности - student2.ru = Точность и достоверность статистической оценки показателей надежности - student2.ru = 1/ T0,

а распределение времени восстановления подчиняется экспоненциальному распределению с интенсивностью восстановления

Точность и достоверность статистической оценки показателей надежности - student2.ru = 1/ TВ ,

где T0 – средняя наработка между отказами;

TВ – среднее время восстановления.

Точность и достоверность статистической оценки показателей надежности - student2.ru

P0(t) – вероятность работоспособного состояния при t;

P1(t) – вероятность неработоспособного состояния при t.

Система дифференциальных уравнений:

Точность и достоверность статистической оценки показателей надежности - student2.ru

Начальные условия: при t = 0 P0(t = 0) = P0(0) = 1; P1(0) = 0, поскольку состояния S0 и S1 представляют полную группу событий, то

P0(t) + P1(t) = 1.

Выражая P0(t) = 1 - P1(t), получаем одно дифференциальное уравнение относительно P1(t):

dP1(t)/dt = Точность и достоверность статистической оценки показателей надежности - student2.ru (1 – P1(t)) - Точность и достоверность статистической оценки показателей надежности - student2.ru P1(t).

Решив уравнение определим вероятность нахождения объекта в неработоспособном состоянии:

Точность и достоверность статистической оценки показателей надежности - student2.ru

Тогда вероятность нахождения в работоспособном состоянии P0(t) = 1 - P1(t), равна

Точность и достоверность статистической оценки показателей надежности - student2.ru

С помощью полученных выражений можно рассчитать вероятность работоспособного состояния и отказа восстанавливаемого объекта в любой момент t.

Лабораторная работа № 5.

«Расчёт показателей безотказности системы промышленного теплоснабжения»

Оглавление

Лабораторная работа №1. 3

Теоретические основы.. 3

Последовательность выполнения работы.. 7

Контрольные вопросы.. 9

Лабораторная работа №2. 10

Теоретические основы.. 10

1. Экспоненциальное распределение. 10

2. Классическое нормальное распределение. 12

3. Усеченное нормальное распределение. 13

4. Распределение Вейбулла. 15

Последовательность выполнения работы.. 16

Контрольные вопросы.. 22

Лабораторная работа №3. 23

Теоретические основы.. 23

Порядок выполнения работы.. 27

Контрольные вопросы.. 28

Лабораторная работа №4. 29

Теоретические основы.. 29

Последовательность выполнения работы.. 37

Контрольные вопросы.. 42

Лабораторная работа № 5. 43

Последовательность выполнения работы.. 43

Контрольные вопросы.. 46


Лабораторная работа №1

«Интервальная оценка показателей безотказности»

Теоретические основы

Точность и достоверность статистической оценки показателей надежности

Показатели надежности представляют собой числовые характеристики случайных величин или их комбинации.

Результат эксперимента над случайными величинами всегда случаен. Если на основе этого результата определяются некоторые числовые характеристики исследуемой случайной величины, то следует ясно понимать, что получаемые таким образом цифры могут отличаться от искомых истинных значений. В связи с этим значения числовых характеристик, получаемые путем статистических исследований, принято называть оценками, подчеркивая тем самым возможность несовпадения их с истинными значениями.

В математической статистике различаются два вида статистических оценок:

• точечные

• интервальные.

Как следует из теории вероятностей, основными показателями качества статистической оценки являются точность и достоверность.

Общепринятым количественным показателем достоверности оценки показателей надежности является доверительная вероятность.

Доверительная вероятность γ – вероятность того, что доверительный интервал накроет действительное значение параметра, оцениваемого по выборочным данным. Значение доверительной вероятности 0<γ<1 выбирается заранее, этот выбор определяется конкретными практическими приложениями.

Смысл величины 1 – γ - вероятность допустимой ошибки. Часто берут значения γ в интервале 0,9 …0,99.

Оцениванием с помощью доверительного интервала называют способ оценки, при котором с заданной доверительной вероятностью устанавливают границы доверительного интервала. Границы доверительного интервала называют доверительными границами или интервальными оценками.

Физический смысл доверительной вероятности состоит в том, что в доверительную область – это область в пространстве параметров, с заданной вероятностью входит неизвестное значение оцениваемого параметра распределения. «Заданная вероятность» называется доверительной вероятностью и обычно обозначается γ. Пусть Θ – пространство параметров. Рассмотрим выборку Θ1 = Θ1(x1, x2,…, xn) – функцию от результатов наблюдений x1, x2,…, xn, значениями которой являются подмножества пространства параметров Θ. Так как результаты наблюдений – случайные величины, то Θ1 – также случайная величина, значения которой – подмножества множества Θ, т.е. Θ1 – случайное множество.

Выборка Θ1 называется доверительной областью, соответствующей доверительной вероятности γ, если

Точность и достоверность статистической оценки показателей надежности - student2.ru

Сложнее обстоит дело с выбором количественной меры точности статистической оценки показателей надежности. Во всех случаях (т.е. при любом оцениваемом показателе надежности а) количественную меру точности оценки естественно связать с шириной доверительного интервала, т.е. со значениями его границ Pn и Pv. Тогда относительную доверительную ошибку показателя можно записать как:

Точность и достоверность статистической оценки показателей надежности - student2.ru

Наши рекомендации