Производная. Правила и формулы дифференцирования.
Напомним, что приращением функции у=f(х) называется разность , где - приращение аргумента х.
Из рисунка видно, что (1).
Предел отношения приращения функции к приращению аргумента при произвольном стремлении кнулю называется производной функции у=f(х)в точкех и обозначается одним из следующих символов: у', f'(х), .
Рис. 1.
Таким образом, по определению
(2)
Если указанный в формуле (2) предел существует, то функцию f(х)называют дифференцируемой в точке х,а операцию нахождения производной у' –дифференцированием.
Из равенства (1) и определения производной, (см. формулу (2)) следует, что производная в точке х равна тангенсу угла наклона касательной, проведенной в точке М(х, у), к графику функции у=f(х) (см. рис. 1).
Легко показать, что с физической точки зрения производная у'=f'(х) определяет скорость изменения функции в точке х относительно аргумента х.
Если С — постоянное число и и=и(х), v=v(x) – некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:
1) (С)'=0;
2) (х)'.=1;
3) (и v)'=и' v';
4) (С и)'=С и'
5)(и v)'=и' v+иv';
6) ;
7) ;
8) если у=f(и)и u= (х), т. Е. y=f( (x)) – сложная функция, составленная из дифференцируемых функций, то
или ;
9) если для функции у=f(х) существует обратная дифференцируемая функция х=g(у) и , то f'(х) = .
На основании определения производной и правил дифференцирования можно составить таблицу производных основных элементарных функций:
1) | 2) ( )' = lnа•u' |
3) (еu)'=еu u' | 4) |
5) | 6) (sin u)’= соs uu’ |
7) (соs u)’=-sin u u’ | 8) |
9) ; | 10) (arcsin u)'= |
11) | 12) |
13) |
Уравнение касательной к кривой у=f(х) в точке Мо(х0; f(х0))
Уравнениe нормалик кривой у=f(х)в точке Мо(х0; f(х0)):
При f/(х0)=0 уравнение нормали имеет вид х=х0.
Углом между кривыми в точке их пересеченияназывают угол между касательными к кривым в этой точке.
Логарифмической производной функции у=f(х)называется производная от логарифма этой функции, т. Е.
(ln f(x))’=f’(x)/f(x).
Последовательное применение логарифмирования и дифференцирования функций называют логарифмическим дифференцированием. В некоторых случаях предварительное логарифмирование функции упрощает нахождение ее производной. Например, при нахождении производной функции у=иv, где и=u(х), v=v(х), предварительное логарифмирование приводит к формуле
у =иv ln и v' + v и v-1 и'.
Если зависимость между переменными у и х задана в неявном виде уравнением F(х, у)=0, то для нахождения производной у'= в простейших случаях достаточно продифференцировать обе части уравнения F(х, у)=0, считая у функцией от х, и из полученного уравнения, линейного относительно у', найти производную.
Исследование поведения функции и
Построение их графиков.
Одной из важнейших прикладных задач дифференциального исчисления является разработка общих приемов исследования поведения функций.
Функция у=f(х)называется возрастающей (убывающей)в некотором интервале, если большему значению аргумента из этого интервала соответствует большее (меньшее) значение функции, т. Е. при x1<x2 выполняется неравенство
f(x1)<f(x2) (f(x1)>f(x2)).
Перечислим признаки возрастания (убывания) функции.
1. Если дифференцируемая функция у=f(х) на oтрезке [а; b] возрастает (убывает), то ее производная на этом отрезке неотрицательна (неположительна), т. Е. f'(х) 0(f' (х) 0).
2. Если непрерывная на отрезке [а; b] и дифференцируемая внутри него функция имеет положительную (отрицательную) производную, то она возрастает (убывает) на этом отрезке.
Функция y=f(х)называется неубывающей (невозрастающей)в некотором интервале, если для любых x1<x2 из этого интервала
f(x1) f(x2) (f(x1) f(x2)).
Интервалы, в которых функция не убывает или не возрастает, называются интервалами монотонности функций, Характер монотонности функции может изменяться только в тех точках ее области определения, в которых меняется знак первой производной. Точки, в которых первая производная функции обращается в нуль или терпит разрыв, называются критическими.
Точка x1называется точкой локального максимума функции у=f(x), если для любых достаточно малых | | 0 выполняется неравенство f(x1+ )<f(x1). Точка x2называется точкой локального минимума функции у=f(х), если для любых достаточно малых | | 0 справедливо неравенство f(x2+ )>f(х2). Точки максимума и минимума называют точками экстремума функции, а максимумы и минимумы функции – ее экстремальными значениями.
Теорема 1 (необходимый признак локального экстремума). Еслифункция. У=f(х) имеет в точке х=х0 экстремум, то либо f'(х0)=0, либо f'(х0) не существует.
В точках экстремума дифференцируемой функции касательная к ее графику параллельна оси Ох.
Теорема 2 (первый достаточный признак локального экстремума). Пусть функция у=f(х) непрерывна в некотором интервале, содержащем критическую точку х=х0 и дифференцируема во всех точках этого интервала (кроме, быть может, самой точки х0). Если f'(х) при х<х0 положительна, а при х>х0 отрицательна, то при х=х0 функция у=f(х) имеет максимум. Если же f '(х) при х<х0 отрицательна, а при х>х0 положительна, то при х=х0 данная функция имеет минимум.
Следует иметь в виду, что указанные неравенства должны выполняться в достаточно малoй окрестности критической точки х=х0. Схема исследования функции у=f(х) на экстремум с помощью первой производной может быть записана в виде таблицы.
Теорема 3 (второй достаточный признак локального экстремума функции).Пусть функция у=f(х) дважды дифференцируема и f'(х0)=0. Тогда в точке х=х0 функция имеет локальный максимум, если f»(х0)<0, и локальный минимум, если f «( х0)>0.
В случае, когда f»(х0)=0, точка х= х0 может и не быть экстремальной..