ГЛАВА XIII. Аналитическая геометрия.
Аналитическая геометрия на плоскости.
Любая линия на плоскости задается уравнением . Для нахождения точек пересечения её с осью Ох надо решить уравнение , аналогично с осью Оу: . Если какое-либо из уравнений решений не имеет, то точек пересечения с соответствующей осью нет.
Для нахождения точек пересечения двух линий и необходимо решить систему из уравнений, т.е.
Универсальным способом задания прямой на плоскости является общее уравнение прямой на плоскости: , где , одновременно не обращаются в ноль. Для описания не вертикальных прямых часто используется уравнение прямой с угловым коэффициентом: , . Если две прямые заданы уравнениями в этой форме, т.е. и , то они параллельны, если , и перпендикулярны при .
Любое алгебраическое уравнение второй степени относительно и описывает на плоскости кривую второго порядка.
К основным из них относятся:
1) окружность: ,
2) эллипс: ,
3) гипербола: , или развернутая, когда асимптотами являются оси координат: ,
4)парабола: или , .
Аналитическая геометрия в пространстве.
Уравнение прямой, проходящей через точку параллельно вектору :
.
Уравнение плоскости, проходящей через точку перпендикулярно вектору :
Уравнение плоскости, проходящей через три данные точки , и , не лежащие на одной прямой:
Уравнения координатных плоскостей:
плоскость XOY ~ ; плоскость XOZ ~ ; плоскость YOZ ~ .
ГЛАВА XIV. ТЕОРИЯ ВЕРОЯТНОСТЕЙ.
Случайные события.
Классическое определение вероятности:
Вероятностью события называется отношения числа благоприятных исходов событию к общему числу равновозможных событий, образующих полную группу, т.е.
, при этом очевидно: .
События называются несовместными, если наступление одного из них исключает наступление другого.
События называются независимыми, если вероятность наступления одного из них не влияет на вероятность наступления другого.
Теоремы сложения и умножения вероятностей:
– для независимых событий и .
– для зависимых событий и .
– для несовместных событий и .
– для совместных событий и .
Случайные величины.
Полной характеристикой случайной величины является её функция распределения . Для дискретной случайной величины более удобной формой задания является ряд распределения:
– возможные значения случайной величины ;
– вероятность того, что случайная величина примет значение
В ряде задач бывает достаточно иметь не полную информацию о случайной величине, а только её основные числовые характеристики:
– математическое ожидание; – дисперсия; – среднеквадратическое отклонение.
Формулы для вычисления:
Для непрерывной случайной величины эти характеристики определяются через функцию плотности распределения
;
Для равномерно распределённой случайной величины функция плотности распределения имеет вид:
Для нормально распределённой случайной величины числовые характеристики являются параметрами плотности распределения:
; ,
Для случайной величины распределенной по закону Пуассона:
; .
Параметр показательного закона распределения определяется: l=1/ M(X)
Свойства числовых характеристик:
1. , 1. ,
2. 2.
3. 3.
независимы