Сети SDH. Контейнеры и структурная схема мультиплексирования.
Технология синхронной цифровой иерархии (Synchronous Digital Hierarchy, SDH) разработана для создания надежных транспортных сетей, позволяющих гибко формировать цифровые каналы широкого диапазона скоростей — от единиц мегабит до десятков гигабит в секунду. Основная область применения технологии SDH — первичные сети операторов связи, но иногда такие сети строят и крупные предприятия и организации, имеющие разветвленную структуру подразделений и филиалов, покрывающих большую территорию, например, в сетях предприятий энергетического комплекса или железнодорожных компаний.
Каналы SDH относятся к классу полупостоянных (semipermanent) — формирование (provisioning) канала происходит по инициативе оператора сети SDH, пользователи же лишены такой возможности, поэтому каналы SDH обычно применяются для передачи достаточно устойчивых во времени потоков. Из-за полупостоянного характера соединений в технологии SDH чаще используется термин кросс-коннект (cross~connect), а не коммутация, j
Сети SDH относятся к классу сетей с коммутацией каналов, использующих синхронное мультиплексирование с разделением времени (Time Division Multiplexing, TDM), при котором информация от отдельных абонентов адресуется относительным временным положением внутри составного кадра, а не явным адресом, как это происходит в сетях с коммутацией пакетов^
Каналы SDH обычно применяют для объединения большого количество периферийных (и менее скоростных) каналов, работающих по технологии плезио-хронной цифровой иерархии (Plesiochronous Digital Hierarchy,!PDH). Пример использования каналов SDH для соединения между собой абонентского оборудования разного типа приведен на рис. 6.4.
Сети SDH обладают многими достоинствами, главные из которых перечислены ниже.
o Гибкая иерархическая схема мультиплексирования цифровых потоков разных скоростей, позволяющая вводить (add, insert) в магистральный канал и выводить (drop) из него пользовательскую информацию любого поддерживаемого технологией уровня скорости, не демультиплексируя поток в целом — а это означает не только гибкость, но и экономию оборудования. Схема мультиплексирования стандартизована на международном уровне, что обеспечивает совместимость оборудования разных производителей.
□ Отказоустойчивость сети. Сети SDH обладают высокой степенью «живучести» — технология предусматривает автоматическую реакцию оборудования на такие типичные отказы, как обрыв кабеля, отказ порта, выход из строя мультиплексора или отдельной его карты, направляя трафик по резервному
пути или переходя на резервный модуль. Переход на резервный путь происходит очень быстро — обычно в течение 50 мс.
□ Мониторинг и управление сетью на основе информации, встроенной в заголовки кадров. Это обеспечивает обязательный уровень управляемости сети, не зависящий От производителя оборудования, и создает основу для наращивания функций менеджмента в фирменных системах управления.
□ Высокое качество транспортного обслуживания для трафика любого типа —голосового, видео и компьютерного. Техника мультиплексирования TDM, лежащая в основе SDH, обеспечивает трафику каждою абонента гарантированнуюпропускную способность, а также низкий и фиксированный уровень задержек!
-АТС
Ш - Маршрутизатор пакетной сети |
- Мультиплексор SDH
- Мультиплексор PDH
- Канал SOH
- Канал PDH
Рис. 6.4. Применение технологии SDH
Сети SDH добились прочного положения в телекоммуникационном мире — сегодня они составляют фундамент практически всех крупных сетей — региональных, национальных и международных. Укрепляет это положение и то, что технология SDH может легко интегрироваться с технологией DWDM, обеспечивающей передачу информации по оптическим магистралям с еще более высокими скоростями — сотни гигабит в секунду и выше — за счет мультиплексирования с разделением по длине волны. В магистральных сетях с ядром DWDM сети SDH будут играть роль сети доступа, то есть ту же роль, которую :вдраюх ;сети: PDH по отношению к SDH. Утехнологии SDH есть, естественно, и недостатки. Сегодня чаще всего говорят о ее неспособности динамически перераспределять пропускную способность между абонентами сети — свойстве, обеспечиваемом пакетными сетями. Значимость этого недостатка будет возрастать по мере увеличения доли и ценности трафика данных по отношению к стандартному голосовому трафику.
???12. Кольцевые SDH-сети. Принцип самовосcтановления.
Кольцо SDH строится из мультиплексоров ввода-вывода, имеющих, по крайней мере, по два агрегатных порта (рис. 6.9, а). Пользовательские потоки вводятся в кольцо и выводятся из кольца через трибутарные порты, образуя соединения «точка-точка» (на рисунке показаны в качестве примера два таких соединения). Кольцо является классической регулярной топологией, обладающей потенциальной отказоустойчивостью — при однократном обрыве кабеля или выходе из строя мультиплексора соединение сохранится, если, его направить по кольцу в противоположном направлении. Кольцо обычно строится на основе кабеля с двумя оптическими волокнами, но иногда для повышения надежности и пропускной .способности применяют четыре волокна.
Существует однонаправленная и двунаправленная защита MSP. При однонаправленной защите (именно этот случай показан на рисунке) решение о переключении принимает только один из мультиплексоров — тот, который является приемным для отказавшего канала. Этот мультиплексор после обнаружения отказа (отказ порта, ошибка сигнала, деградация сигнала и т. п.) переходит на прием по защитному каналу. При этом передача и прием ведутся по разным портам (рис. 6.11, б).
При двунаправленной защите MSP при отказе рабочего канала в каком-либо направлении выполняется полное переключение на защитные порты мультиплексоров. Для уведомления передающего (по рабочему каналу) мультиплексора о необходимости переключения принимающий мультиплексор использует протокол, называемый протоколом «К-байт». Этот протокол указывает в двух байтах заголовка кадра STM-N статус рабочего и защитного каналов, а также детализирует информацию об отказе.
Механизм MSP обеспечивает защиту всех соединений, проходящих через защищаемую мультиплексную секцию.
Время переключения защиты MSP, согласно требованиям стандарта, не должно превышать 50 мс.
СЗащита соединения (SNC-P) обеспечивает переключение определенного пользовательского соединения на альтернативный путь при отказе основного пути. Объектом защиты SNC-P является трибутарный трафик, помещенный в виртуальный контейнер определенного типа (например, в VC12, VC-3 или VC-4). Используется схема защиты .1+1.
ЗащитаjSNC'P конфигурируется в двух мультиплексорах- входном, в котором трибутарный трафик, помещенный в виртуальный контейнер, разветвляется,
a также выходном, в котором сходятся два альтернативных пути трафика. Пример защиты SNC-P показан на рис. 6.12. В мультиплексоре ADM1 для виртуального контейнера VC-4 трибутарного порта Т2 заданы два соединения: с одним из четырех контейнеров VC-4 агрегатного порта А1 и с одним из четырех контейнеров VC-4 агрегатного порта А2. Одно из соединений конфигурируется как рабочее, а второе — как защитное, при этом трафик передается по обоим соединениям. Промежуточные (для данных соединений) мультиплексоры конфигурируются обычным образом. В выходном мультиплексоре контейнер VC-4 трибутарного порта ТЗ также соединяется с контейнерами — агрегатного порта А1 и агрегатного порта А2. Из двух поступающих на порт ТЗ потоков выбирается тот, качество которого выше (при равном нормальном качестве выбирается сигнал из агрегатного порта, выбранном при конфигурировании в качестве рабочего).
Защитный путь |
ADM4 |
Точка объединения
путей — выбор
Одного из двух сигналов
Точка
Точка
Разветвления путей
VC-4
Рис. 6.12. Защита SNC-P
Защита SNC-P работает в любых топологиях сетей SDH, в которых имеются альтернативные пути следования трафика, то есть кольцевых и ячеистых^
Защита с разделением кольца (MS-SPRing) обеспечивает в некоторых случаях более экономичную защиту трафика в кольце. Хотя защита SNC-P вполне подходит для кольцевой топологии сети SDH, в некоторых случаях ее применение уменьшает полезную пропускную способность кольца, так как каждое соединение потребляет удвоенную полосу пропускания вдоль всего кольца. Так, в кольце STM-16 можно установить только 16 защищенных по SNC-P соединений VC-4.
Защита MS-SPRing позволяет использовать пропускную способность кольца более эффективно, так как полоса пропускания не резервируется заранее для каждого соединения. Вместо этого резервируется половина пропускной способности кольца, но эта резервная полоса выделяется для соединения динамически, по мере необходимости,то есть после обнаружения факта отказа линии или мультиплексора.