Геометрический расчёт эвольвентныхпрямозубчцилиндрич передач
В зависимости от профиля зубьев колес различают зацепления трех основных видов: эвольвентные, когда профиль зуба образован двумя симметричными эвольвентами; циклоидальные, когда профиль зубьев образован циклоидальными кривыми; зацепления Новикова, когда профиль зуба образован дугами окружности.
Эвольвентой, или разверткой окружности, называется кривая, которую описывает точка, лежащая на прямой (так называемой производящей прямой) линии, касательной к окружности и перекатываемой по окружности без скольжения. Окружность, разверткой которой является эвольвента, называют основной окружностью. С увеличением радиуса основной окружности кривизна эвольвенты уменьшается. При радиусе основной окружности, равном бесконечности, эвольвента превращается в прямую, что соответствует профилю зуба рейки, очерченному по прямой.
Наиболее широкое применение находят зубчатые передачи с эвольвентным зацеплением, которое имеет следующие преимущества перед другими видами зацепления: 1) допускается небольшое изменение межосевого расстояния при неизменном передаточном отношении и нормальной работе сопряженной пары зубчатых колес; 2) облегчается изготовление, так как одним и тем же инструментом можно нарезать колеса
Приведенные ниже сведения относятся к эвольвентному зацеплению.
Схема звольвентного зацепления (рис. 3, а). Два колеса с эвольвентными профилями зубьев соприкасаются в точке А, находящейся на линии центров О1О2 и называемой полюсом зацепления. Расстояние aw между осями колес передачи по межосевой линии называют межосевым расстоянием. Через полюс зацепления проходят начальные окружности зубчатого колеса, описанные вокруг центров О1 и О2 и при работе зубчатой пары перекатывающиеся одна по другой без скольжения. Понятие о начальной окружности не имеет смысла для одного отдельно взятого колеса, и в этом случае применяют понятие о делительной окружности, на которой шаг и угол зацепления колеса соответственно равны теоретическому шагу и углу зацепления зуборезного инструмента. При нарезании зубьев методом обкатки делительная окружность представляет собой как бы производственную начальную окружность, возникающую в процессе изготовления колеса. В случае передачи без смещения делительные окружности совпадают в начальными.а — основные параметры; б — инволюта; 1 — линия зацепления; 2 — основная окружность; 3 — начальная и делительная окружности
Шпоночные соединения
Шпо́ночноесоедине́ние — соединение охватывающей и охватываемой детали для передачи крутящего момента с помощью шпонки. Шпоночное соединение позволяет обеспечить подвижное соединение вдоль продольной оси. Классификация соединений в зависимости от формы шпонки: соединения призматическими шпонками, соединения клиновыми шпонками, соединения тангенциальными шпонками, соединения сегментными шпонками, соединения цилиндрическими шпонками. Шпонка представляет собой стальной брус, вставляе-мый в пазы вала и ступицы. Она служит для передачи момента между валом и ступицей колеса, шкива, звездочки. Основные типы шпонок стандартизированы.
Основной критерий работоспособности шпоночного соединения — прочность на смятие.
Достоинства шпоночных соединений:
• простота конструкции,
• легкость монтажа и демонтажа,
• низкая стоимость.
Недостатки шпоночных соединений:
• шпоночные пазы ослабляют прочность вала и ступицы,
• конструкция напряжений, возникающих в зоне шпоночного паза, снижает сопротивление усталости.
Шпоночные соединения подразделяются на:
• не напряженные: с использованием призматических и сегментных шпонок (при сборке в деталях не возни-кают предварительные напряжения);
• напряженные: с применением клиновых и тангенциальных шпонок (при сборке возникают монтажные на-пряжения).
Пара сил. Момент пары сил
Парой сил называется приложенная к твердому телу система двух сил (F,F') , равных по модулю, параллельных и направленных в противоположные стороны:F = -F'; F=F'.
Расстояние d между линиями действия сил пары называется плечом пары; плоскость , в которой действуют силы пары, называется плоскостью действия пары. Совокупность нескольких пар, действующих на тело, называется системой пар.
Пара сил не имеет равнодействующей. Она стремится сообщить телу некоторое вращение. Вращательный эффект пары характеризуется векторной величиной, называемой моментом пары. Момент пары сил относительно точки O
MO(F,F') = MO(F) + MO(F') не зависит от выбора точки O и равен моменту одной из сил пары относительно точки приложения другой силы
M(F,F') = MA(F') = MB(F) .
Момент пары сил M перпендикулярен плоскости действия пары, направлен по правилу правого винта и равен по модулю произведению модуля любой из сил на плечо пары: M = F · d.
Векторный момент пары сил может быть приложен в любой точке пространства, т.е. является свободным вектором.
Две пары сил, имеющие одинаковые векторные моменты, эквивалентны, т.е. оказывают на тело одинаковое механическое действие.
.Эквивалентность пар: действие пары сил на твердое тело не изменится, если
переместить пару в другое положение в плоскости ее действия;
плоскость ее действия переместить параллельно самой себе;
любым образом изменить модули сил и плечо пары, сохранив неизменным их произведение, т.е. момент пары M=F · d.
Сложение пар сил: система n пар сил с моментами M1,M2,...,Mn эквивалентна одной паре с моментом M, равным векторной сумме моментов этих пар: M = Mk.
Условие равновесия системы пар, приложенных к твердому телу: M = Mk=0.