Сформулировать и доказать теорему о достаточном условии оптимальности решений пары двойственных задач линейного программирования.
Теорема о достаточном условии оптимальности решений пары двойственных задач: Если и - допустимые решения пары двойственных задач, для которых выполняется равенство , то и - оптимальные решения соответствующих задач.
Согласно этой теореме, план производства продукции и вектор оценок ресурсов является оптимальным, если цена всей произведенной продукции и суммарная оценка ресурсов совпадают.
43.Сформулировать и доказать первую основную теорему двойственности. В чем состоит экономическое содержание первой основной теоремы двойственности?
Если одна из двойственных задач имеет оптимальное решение, то двойственная ей задача также имеет оптимальное решение, причем экстремумы целевых функций равны, т.е. .
Если одна из двойственных задач не имеет оптимального решения, то другая задача также не имеет оптимального решения, причем если одна из задач не имеет оптимального решения из-за неограниченности целевой функции, то другая из-за несовместности системы ограничений.
Д-во: Пусть существует оптимальное решение х* прямой задачи, тогда оптимальное базисное решение расширенной задачи лп существует и имеет вид:
Где B* - оптимальная базисная матрица.
Оптимальное значение функции цели расширенной задачи равно
. Но поскольку коэффициенты функции цели при дополнительных переменных расширенной задачи равны нулю, то это значение является одновременно и оптимальным значением целевой функции первоначальной задачи :
Докажем теперь, что существует оптимальное решение двойственной задачи P*/ Для этого докажем что решение двойственной задачи допустимо, а затем то, что оно оптимально. В самом деле, поскольку решение оптимальное базисное решение расширенной задачи, то для него все симплекс-разности неположительны . Но поскольку то . В первоначальной нумерации матрица неА и цены неС расширенной задачи имеют следующую структуру: неА=(А,Em) неС=(с,0). В соответствии с данной структурой неравенства разделяются на 2 части:
И , поэтому Ро допустимое решение двойственной задачи. Кроме того, в соответствии с , поэтому согласно теореме о достаточном условии оптимельности решений пары двойственных задач лп Po является оптимельным решением. Пусть теперь целевая функция прямой задачи не ограничена. Предположим, что двойственная задача имеет допустимое решение Р тогда по основному неравенству теории двойственности значения функции цели для всех допустимых решений прямой задачи были бы ограничены сверху величиной рb, но это противоречит тому. Что ф-я цели не ограничена, поэтому двойственная задача не имеет решения.
Экономическое содержаниепервой основной теоремы двойственности ЛП таково. В терминах оценок она может быть сформулирована следующим образом: если задача определения оптимального плана, максимизирующего выпуск продукции, разрешима, то разрешима и задача определения минимальных оценок ресурсов, причем цена продукта, полученного реализацией оптимального плана, совпадает с суммарной оценкой имеющихся ресурсов.
44.Сформулировать и доказать вторую основную теорему двойственности. В чем состоит экономическое содержание второй основной теоремы двойственности?
Для того чтобы допустимые решения исходной и двойственной задач являлись оптимальными решениями соответствующих задач двойственной пары необходимо и достаточно выполнение следующих условий:
Т.е. если какое-либо нер-во системы ограничений одной из задач не обращается в точное равенство оптимальным решением этой задачи, то соответствующая компонента оптимального решения двойственной задачи должна быть равна 0. Если же какая-либо компонента оптимального решения положительна, то соотв-ее ей ограничение в двойственной задаче должно быть обращено в точное равенство.
Другими словами: 1)если хj0>0,то aijyi0=cj; 2)если aijyi0>cj , то xj0=0; 3)если yi0>0, то aijxj0=bi; 4)если aijxj0<bi,то yi0=0. j= , i=
Если по оптимальному плану расход i-того ресурса < его запасов, то оценка этого ресурса=0. Если же оценка>0, то расход этого ресурса равен его запасу. Таким образом, дефицитный (полностью используемый по оптимальному плану) ресурс имеет положительную оценку в двойственной задаче, а недефицитный – нулевую оценку.
С точки зрения пр-ва: если оценка ресурсов, расходуемых по j-ой технологии больше цены продукта, то j-ая технология не применяется (xj=0). Если же по некот. плану j-ая технология применяется (xj>0), то оценка ресурсов, расходуемых по данной технологии, равна цене продукта.
Док-во:
Оптимальные решения Х* и Y* как допустимые решения удовлетворяют следующим неравенствам: . Умножим первое из них на Y*, а второе на X*, тогда . Поскольку Y*B=CX*, то левые части неравенства равны и каждая равна нулю:
. В развёрнутой форме ; , что и требовалось доказать
45. Сформулировать и доказать третью основную теорему двойственности. В чем состоит экономическое содержание третьей основной теоремы двойственности?
Пусть дана пара двойственных несимметричных задач:
(i=1,m), (j=1,n)
Предположим, что мы решили исходную задачу:
Zmax=Z0(X0)
Тогда предположим, что – оптимальное решение 2ой задачи.
Теорема: значения переменных Yi0 в оптимальном решении двойств. Задачи представляют собой оценки правых частей bi системы ограничений исходной задачи на величину максимума целевой функции:
Доказательство:
Экон.смысл: двойственная оценка ресурса – это приращение прибыли, приходящейся на единицу приращения этого ресурса. Здесь речь идет лишь о достаточно малых приращениях ресурсов, так как изменение величины в некоторый момент вызовет изменение оценок . Оценки позволяют выявить направление мероприятий по расшивке узких мест производства (ресурсы с положительной двойственной оценкой), обеспечивающих получение наибольшего экономического эффекта.
Из 2-ой и 3-ей теорем следует, что часть ресурсов, у которых двойственные оценки будут отличны от 0, необходимо будет пополнять для продолжения выпуска продукции. Недостающие ресурсы должны быть пополнены, причем в оптимальном количестве.