Уравнение вращения тела вокруг неподвижной оси имеет вид
φ = φ(t). (25)
Угловая скорость ω и угловое ускорение ε соответственно равны
(рад/с), (26)
(рад/с). (27)
Если в данный момент времени εω > 0, то в этот момент тело вращается ускоренно, если же εω < 0, то вращение замедленное.
При вращении тела в одном и том же направлении угол поворота тела φ за промежуток времени t - t0определяют по формуле
ψ = φ - φ0, (28)
где φ и φ0—значения угловой координаты в моменты t и t0. Угол ψ поворота тела связан с числом оборотов тела N зависимостью
ψ = 2πN . (29)
В технике угловую скорость тела выражают числом оборотов в минуту. Переход от п (об/мин) к ω в (рад/с) осуществляют по формуле
ω = πN/30.(30)
При равномерном вращении тела ω = const,ε = 0. В этомслучае уравнение вращения тела имеет вид
φ = φ0 + ωt. (31)
При равнопеременном вращении тела ε = const. В этом случае
ω = ω0+ εt, (32)
и уравнение вращения тела принимает вид
φ = φ0 + ω0t + εt. (33)
Пример 1. Крен судна на спокойной водe описывается уравнением (t - в секундах, φ - в радианах), (рис. 35). Определить моменты времени, в которые судно имеет максимальный крен, и моменты, когда его угловая скорость достигает максимальных значений, а также промежутки времени, когда вращение судна ускоренное и когда замедленное.
Решение. Для исследования движения определим ω и ε. Согласно формулам (26) и (27),
; .
Из уравнения движения судна видно, что максимальный крен судна равен π/18 и имеет место в моменты времени tп =10 с
(п = 0; 1; 2; ...). В эти моменты времени угловая скорость равна
Рис. 35 нулю, а угловое ускорение имеет экстремальные значения.
Угловая скорость приобретает максимальное значение, равное π2/l80 рад/с в моменты времени tm = 5 (2m + 1) с (m=0; 1; 2; ...). Рассматриваемое движение имеет периодический характер (период Т = 20 с), поэтому достаточно провести исследование за время одного периода. Из графиков функций следует, что в начальный момент (t = 0) судно имело крен , движение началосьбез начальной угловой скорости с угловым ускорением рад/с2.
В интервале 0 < t < 5 с угловая координата φ уменьшается. Качка судна ускоренная, так как ωε > 0. При t = 5 с угловая скорость достигает экстремального значения, а угловое ускорение равно нулю. В интервале 5с< t <10 с вращение судна замедленное. При t = 10 с угловая скорость равна нулю, затем меняет знак, т. е. изменяется направление вращения судна.
В интервале 10 с < t < 15 с ωε > 0, поэтому вращение ускоренное, а в интервале 15c < t < 20c ωε < 0 и вращение снова замедленное.
При t = 20 с судно возвращается в первоначальное положение и процесс качки повторяется.
Задачи
1.3.15.* Разводной мост (рис. 36) поворачивается в горизонтальной плоскости на 90°. Считая, что при повороте от 0 до 30° мост вращается равноускоренно, при повороте от 30 до 60°- равномерно и при повороте от 60 до 90° - равнозамедленно, определить время полного поворота, если известно, что максимальная скорость конца В равна 1 м/с, а длина
Рис.36 ОВ = 50 м.
Ответ: t = 2 мин 10,7 с.
1.3.16.* При пуске в ход гирокомпаса угловое ускорение его ротора возрастает от нуля пропорционально времени. По прошествии 5 мин ротор имеет 18 000 об/мин. Сколько оборотов сделал ротор за это время?
Ответ: 30000 оборотов.
1.3.17.* В период разгона из состояния покоя угловое ускорение ротора турбины за время Т равномерно убывает от начального значения до нуля, после чего ротор вращается равномерно. Определить максимальную угловую скорость ротора.
Ответ: ωтах = ε0t/2.
1.3.18.* Самолет, летящий с постоянной скоростью и прямолинейным горизонтальным курсом, сопровождается лучом прожектора. С какой угловой скоростью должен поворачиваться луч прожектора, если кратчайшее рас-стояние между прожектором и курсом самолета равно h?
Ответ: ω = cos2φ, где φ - угол между лучом прожектора и перпендикуляром, восставленным из точки нахождения прожектора на курс самолета.
1.3.19.*В кулисном механизме (рис. 37) определить угловую скорость и угловое ускорение кулисыОС в момент, когда φ = π/4 рад, если штанга АВ движется с постоянной скоростью и. В начальный момент φ = 0.
Ответ: ; .
Рис.37
1.3.20.* Движение поршня двигателя (рис. 38) задано уравнением s = R sin kt. Определить угловую скорость коленчатого вала двигателя в момент, когда поршень занимает среднее положение, если длина шатуна АВ равна L, а длина кривошипа ОА равна R.
Ответ: ; если L>>R,то ω ≈ k.
Рис. 38Рис. 39
1.3.21.* Кулисный механизм приводится в движение кривошипом ОС (рис. 39). Определить угловую скорость и угловое ускорение кулисы BD, если кривошип ОС вращается с постоянной угловой скоростью ω и в начальный момент занимал вертикальное положение, а отношение расстояния между осями О и В к длине кривошипа a/b = λ.
Ответ: ;
.