Тема 2. Аналитическая геометрия
Пример 1.Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).
Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А.
Получаем: 3 – 2 + C = 0, следовательно С = -1.
Итого: искомое уравнение: 3х – у – 1 = 0.
Пример 2.Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).
Применяя уравнение прямой, проходящей через 2 точки, получаем:
Пример 3. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).
Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением, коэффициенты должны удовлетворять условиям:
1×A + (-1)×B = 0, т.е. А = В.
Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C/A = 0.
при х = 1, у = 2 получаем С/A = -3, т.е. искомое уравнение:
х + у - 3 = 0
Пример 4.Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.
С = 1, , а = -1, b = 1.
Пример 5.Дано общее уравнение прямой 12х – 5у – 65 = 0. Требуется написать различные типы уравнений этой прямой.
уравнение этой прямой в отрезках:
уравнение этой прямой с угловым коэффициентом: (делим на 5)
нормальное уравнение прямой:
; cosj = 12/13; sinj = -5/13; p = 5.
Пример 6.Прямая отсекает на координатных осях равные положительные отрезки. Составить уравнение прямой, если площадь треугольника, образованного этими отрезками равна 8 см2.
Уравнение прямой имеет вид: , a = b = 1; ab/2 = 8; a = 4; -4.
a = -4 не подходит по условию задачи.
Итого: или х + у – 4 = 0.
Пример 7.Составить уравнение прямой, проходящей через точку А(-2, -3) и начало координат.
Уравнение прямой имеет вид: , где х1 = у1 = 0; x2 = -2; y2 = -3.
Пример 8.Определить угол между прямыми: y = -3x + 7; y = 2x + 1.
k1 = -3; k2 = 2 tgj= ; j = p/4.
Пример 9.Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.
Находим: k1 = 3/5, k2 = -5/3, k1k2 = -1, следовательно, прямые перпендикулярны.
Пример 10.Даны вершины треугольника А(0; 1), B(6; 5), C(12; -1). Найти уравнение высоты, проведенной из вершины С.
Находим уравнение стороны АВ: ; 4x = 6y – 6;
2x – 3y + 3 = 0;
Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b.
k= . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: .
Ответ: 3x + 2y – 34 = 0.
Раздел 3. Математический анализ
ТЕМА 1. Пределы функций
Для определения пределов последовательностей и функций используются некоторые известные приемы:
1. Если необходимо найти предел
,
можно предварительно привести к общему знаменателю
.
Поделив на член, имеющий максимальную степень, получим в числителе постоянную величину, а в знаменателе – все члены, стремящиеся к 0,то есть
.
2. Аналогично, для примера
3. в этом пределе, если подставить x=a, то получится неопределенность, которую можно преодолеть, если разложить разность кубов в знаменателе , а числитель в виде: .
Тогда и подставив x=a, получим: ;
4. , при подстановке х=0, получим .
5. Однако, если необходимо найти предел рациональной функции
, то при делении на член с минимальной степенью, получим
; и, устремив х к 0, получим:
Если в пределах содержатся иррациональные выражения, то приходится вводить новые переменные для получения рационального выражения, или же переводить иррациональности из знаменателя в числитель и наоборот.
6. ; Сделаем замену переменной. Заменим , при , получим .
7. . Если числитель и знаменатель умножить на одно и то же число, то предел не изменится. Умножим числитель на и разделим на это же выражение, чтобы предел не изменился, а знаменатель умножим на и разделим, на это же выражение. Тогда получим:
Для определения пределов часто используются замечательные пределы:
; (1)
. (2)
8. .
Для вычисления такого предела сведем его к 1-му замечательному пределу (1). Для этого умножим и разделим числитель на , а знаменатель на , тогда .
9. Для вычисления этого предела сведем его ко второму замечательному пределу. С этой целью из рационального выражения в скобках выделим целую часть и представим ее в виде правильной дроби. Так поступают в тех случаях, когда , где , а , где ;
, а , то окончательно . Здесь использовалась непрерывность композиции непрерывных функций.
ТЕМА 2. Производная
Производной от функции называется конечный предел отношения приращения функции к приращению аргумента, когда последнее стремится к нулю:
, или .
Геометрически производная представляет собой угловой коэффициент касательной к графику функции в точке х, то есть .
Производная есть скорость изменения функции в точке х.
Отыскание производной называется дифференцированием функции.
Формулы дифференцирования элементарных функций: