I. Аналитическая геометрия на плоскости и в пространстве.

1. Числовая ось. Декартова система координат на прямой, на плоскости, в пространстве. Координаты точки.

2. Расстояние между двумя точками. Деление отрезка в данном отношении

3. Понятие об уравнении линии. Уравнение прямой с угловым коэффициентом. Общее уравнение прямой и его исследование. Уравнение прямой, проходящей через одну; через две точки. Угол между двумя прямыми. Условия параллельности и перпендикулярности прямых. Пересечение двух прямых.

4. Неравенства первой степени. Решение неравенства. Графическое решение системы линейных неравенств.

5. Канонические уравнения кривых вторых порядка: окружности, параболы, эллипса, гиперболы.

II. Введение в математический анализ.

Предел, непрерывность функции.

6. Множество действительных чисел. Абсолютная величина действительного числа.Свойства абсолютных величин.Числовые промежутки.

7. Постоянные и переменные величины. Понятие функции с одной переменной. Область определения, область изменения функции. Способы задания функции. График функции. Свойства и графики элементарных функции.

8. Понятие числовой последовательности. Бесконечно малая и бесконечно большая числовые последовательности. Связь между ними. Понятие предела числовой последовательности (два определения).Теорема о существовании предела монотонной, ограниченной последовательности. Предел постоянной и бесконечно малой. Сравнение бесконечно малых величин . Теоремы о пределе суммы, произведения, частного числовых последовательностей.

9. Предел функции в точке. Первый и второй замечательный пределы. Раскрытие неопределенностей.

10. Приращение аргумента и функции в точке. Непрерывность функции в точке и на промежутке. Точки разрыва функции и их классификация. Свойства непрерывных функций.

Ш. Дифференциальное исчислений функции одной переменной.

11. Задачи, приводящие к понятию производной. Понятие производной; ее геометрический, механический, экономический смысл. Связь непрерывности с дифференцируемостью.

12.Правила дифференцирования функции. Производные элементарных функций. Производная сложной функции. Таблица производных. Производные высших порядков.

13. Дифференциал функции, его геометрический смысл. Применение дифференциала в приближенных вычислениях. Применение производной к вычислению пределов./Правило Лопиталя /.

14. Теоремы Ролля, Лагранжа. Применение производной к исследованию функции.

Возрастание, убывание функции. Признаки возрастания, убывания функции. Понятие экстремума функции. Необходимый признак экстремума функции. Первый и второй достаточные признаки экстремума,

15.Выпуклость, вогнутость графика функции, точки перегиба. Асимптоты кривой. Схема исследования функции и построение ее графика.

IV. Дифференциальное исчисление функции двух переменных.

16. Определение функции двух независимых переменных. Область определения. Частные и полное приращения функции с двумя переменными. Предел непрерывной функции с двумя переменными.

17. Частные производные, частные и полный дифференциалы функции с двумя переменными. Применение полного дифференциала в приближенных вычислениях. Частные производные высших порядков.

18.Экстремум функции двух переменных. Понятие максимума, минимума. Необходимый и достаточный признаки экстремума. Нахождение наименьших, наибольших значений функции. Задача обработки наблюдений. Метод наименьших квадратов. Подбор параметров кривых по способу наименьших квадратов.

V. Интегральное исчисление

19.Понятие первообразной; неопределенного интеграла. Таблица основных интегралов. Методы интегрирования: непосредственное, замена переменной, по частям. Интегрирование рациональных дробей.

20.3адачи, приводящие к понятию определенного интеграла. Понятие определенного интеграла, как предела интегральных сумм. Теорема существования. Свойства определен­ного интеграла. Связь определенного интеграла с неопределенным. Формула Ньютона-Лейбница. Методы интегрирования для определенного интеграла. Приложение определенного интеграла к решению задач.

21. Понятие несобственных интегралов с бесконечными пределами интегрирования и от неограниченных функций. Понятие сходящихся и расходящихся интегралов. Интеграл Пуас­сона. Геометрический смысл сходящихся несобственных интегралов.

Литература

1. Высшая математика для экономистов. Под редакцией проф. Н. Ш. Крамера. – М.: Юнити, 2001

2. Баврин. И. И. Высшая математика. М.: Академия, 2002

3. Зайцев И. А. Высшая математика. Учебное пособие для неинженерных специальностей с.-х. Вузов. – М.: Высшая школа, 1991

4.Шипачев В. С. Высшая математика– М.: Высшая школа, 1996

5. Лихолетов И. И. Высшая математика, теория вероятностей и математическая статистика. Минск. Высшая школа, 1976

6. Карасев А. И., Аксютина З. М., Савельева Т. И. . Высшая математика для экономических ВУЗов – ч. 1 – М.: Высшая школа, 1982

7. Минорский В. П. сборник задач по высшей математике. –М.: Наука, 1987

8. Данко П. Е., Попов А. Г.- ч. 1,2 - М.: Высшая школа, 1974

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Наши рекомендации