Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка.

Рассмотрим дифференциальное уравнение п-го порядка:

F (x, y, y′,…, y(n)) = 0, (18.1)

где F предполагается непрерывной функцией всех своих аргументов. Тогда по теореме о существовании неявной функции (см. лекцию ) можно разрешить это уравнение относительно старшей производной:

у(п) = f (x, y, y′,…, y(n-1)) (18.2)

и сформулируем для него (без доказательства) теорему существования и единственности решения:

Теорема 18.1. Существует единственное решение уравнения (18.2), удовлетворяющее условиям

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru ,(18.3)

если в окрестности начальных значений (х0 , у0 , у′0,…,у0(п-1)) функция f является непрерывной функцией всех своих аргументов и удовлетворяет условию Липшица по всем аргументам, начиная со второго.

Замечание 1. Так же, как и для дифференциального уравнения 1-го порядка, задача отыскания решения уравнения (18.2), удовлетворяющего условиям (18.3), называется задачей Коши.

Замечание 2. Теорема 18.1 утверждает существование частного решения уравнения (18.2), удовлетворяющего данным начальным условиям. С геометрической точки зрения это соответствует существованию интегральной кривой, проходящей через точку Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . Но, используя эту теорему, можно доказать и существование общего решения уравнения (18.2), содержащего п произвольных постоянных и имеющего вид:

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru (18.4)

или, в неявной форме:

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . (18.5)

Соотношение (18.5) будем называть общим интегралом уравнения (18.1) или (18.2).

Уравнения, допускающие понижение порядка.

В некоторых случаях порядок дифференциального уравнения может быть понижен, что обычно облегчает его интегрирование. Рассмотрим несколько типов подобных уравнений.

1. Уравнение не содержит искомой функции и ее производных по порядок (k – 1) включительно:

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . (18.6)

В этом случае можно сделать замену р = у(k), которая позволяет понизить порядок уравнения до n – k, так как после замены уравнение примет вид

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru .

Из этого уравнения можно найти р = р (х, С1 , С2 ,…, Сn-k), а затем найти у с помощью интегрирования k раз функции р = р (х, С1 , С2 ,…, Сn-k).

Пример.

Уравнение Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru при замене Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru становится уравнением 1-го порядка относительно р: Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , откуда Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . Тогда

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru .

2. Уравнение не содержит независимой переменной:

F ( y, y′,…, y(n)) = 0. (18.7)

Порядок такого уравнения можно понизить на единицу заменой у′ = р(у). При этом производные функции f(x) по аргументу х нужно выразить через производные р по у:

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru и т.д.

Пример.

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru Пусть Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru тогда Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . Отметим частное решение р = 0, то есть Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru Если Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru после сокращения на р получим Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru

3. Уравнение F (х, y, y′,…, y(n)) = 0 однородно относительно аргументов y, y′,…, y(n), то есть справедливо тождество

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru

В этом случае можно понизить порядок уравнения на единицу, вводя новую неизвестную функцию z, для которой Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . Тогда Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru и т.д.

Лекция 19.

Линеаризация диффе6ренциальных уравнений. Линейные дифференциальные уравнения высших порядков. Однородные уравнения, свойства их решений. Свойства решений неоднородных уравнений.

Определение 19.1. Линейным дифференциальным уравнением п-го порядканазывается уравнение, линейное относительно неизвестной функции и ее производных:

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . (19.1)

Если Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , уравнение называется линейным однородным.

Если а0(х) не равно нулю ни в одной точке некоторого отрезка [a,b], линейное однородное уравнение удобно записывать в форме

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru (19.2)

или Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . (19.2′)

Замечание 1. Если коэффициенты pi(x) непрерывны на [a,b], то в окрестности любых начальных значений при Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru удовлетворяются условия теоремы суще6ствования и единственности.

Замечание 2. Линейность и однородность уравнения сохраняются при любом преобразовании Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , где Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru - п раз дифференцируемая функция и Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru на [a,b], так как Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru и т.д., то есть производная любого порядка по х является линейной однородной функцией производных по t.

Замечание 3. Линейность и однородность уравнения сохраняются также при линейном однородном преобразовании неизвестной функции y(x) = α(x)z(x).

Определение 19.2. Назовем линейным дифференциальным оператором

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru (19.3)

результат применения к функции у операций, задаваемых левой частью уравнения (19.2).

При этом уравнение (19.2) можно записать в виде L[y] = 0.

Свойства линейного дифференциального оператора.

1) Постоянный множитель выносится за знак линейного оператора: L[cy] = cL[y], так как (су)(i) = cy(i).

2) L[y1 + y2] = L[y1] + L[y2].

Действительно, (у1 + у2)(i) = y1(i) + y2(i), откуда следует справедливость сформулированного свойства.

Следствие.

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . (19.4)

Используя свойства линейного оператора, можно указать некоторые свойства решений линейного однородного уравнения (19.2).

Теорема 19.1. Если у1 – решение уравнения (19.2), то и су1, где с – произвольная постоянная, – тоже решение этого уравнения.

Доказательство. Если L[y1] = 0, то по свойству 1) линейного оператора L[сy1] = 0, что и требовалось доказать.

Теорема 19.2. Сумма у1 + у2 решений уравнения (19.2) тоже является решением этого уравнения.

Доказательство. Так как L[y1] = 0 и L[y2] = 0, по свойству 2) линейного оператора L[y1 + у2] = L[y1] + L[y2] = 0, что доказывает утверждение теоремы.

Следствие теорем 19.1 и 19.2. Линейная комбинация Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru решений уравнения (19.2) у1, у2,…,ут с произвольными постоянными коэффициентами тоже является решением этого уравнения.

Если рассматривается линейное неоднородное уравнение (19.1), которое при Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru можно записать в виде

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru (19.5)

или L[y] = f(x), то при непрерывности функций pi(x) и f(x) оно имеет единственное решение, удовлетворяющее заданным начальным условиям (18.3).

Из свойств линейного оператора следуют свойства решений неоднородного линейного уравнения:

1) Сумма Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru решения Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru неоднородного уравнения (19.5) и решения у1 соответствующего однородного уравнения (19.2) является решением неоднородного уравнения (19.5). Доказательство. Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru .

2) Если yi – решение уравнения L[y] = fi(x), то Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru является решением уравнения Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , где αi – постоянные (принцип суперпозицииили наложения). Доказательство.

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , что и требовалось доказать.

Лекция 20.

Линейная зависимость и независимость системы функций. Определитель Вронского, его свойства. Фундаментальная система решений однородного линейного дифференциального уравнения. Общее решение однородного уравнения.

Определение 20.1. Функции у1(х), у2(х),…, уп(х) называются линейно зависимыми на некотором отрезке [a,b], если существуют такие числа α1, α2,…, αп, хотя бы одно из которых не равно нулю, что

α1у1 + α2у2 + … + αпуп = 0 (20.1)

на рассматриваемом отрезке. Если же равенство (20.1) справедливо только при всех αi=0, функции у1(х), у2(х),…, уп(х) называются линейно независимымина отрезке [a,b].

Примеры.

  1. Функции 1, x, x², …, xn линейно независимы на любом отрезке, так как равенство α1 + α2x + α3x² + … + αn+1xn = 0 справедливо только при всех αi = 0. Иначе в левой части равенства стоял бы многочлен степени не выше п, который может обращаться в нуль не более, чем в п точках рассматриваемого отрезка.
  2. Линейно независимой на любом отрезке является система функций Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . Если предположить, что эта система линейно зависима, то существуют такие числа α1, α2,…, αп (пусть для определенности Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru ), что Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . Разделим полученное равенство на Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru и продифференцируем: Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . Проделав эту операцию п-1 раз, придем к равенству Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , что невозможно, так как по предположению Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru .
  3. Подобным образом можно доказать линейную независимость системы функций Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru

Определение 20.2. Определитель вида

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru (20.2)

называется определителем Вронскогосистемы функций у1, у2,…, уп.

Теорема 20.1. Если функции у1, у2,…, уп линейно зависимы на отрезке [a,b], то их определитель Вронского на этом отрезке тождественно равен нулю.

Доказательство.

Дифференцируя п-1 раз тождество α1у1 + α2у2 + … + αпуп = 0 , где не все αi = 0, получим линейную однородную систему относительно α1, α2,…, αп:

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru которая по условию должна иметь нетривиальное решение при любом х из отрезка [a,b], а это возможно только в том случае, если главный определитель этой системы (см. правило Крамера) равен нулю. Поскольку этот главный определитель является определителем Вронского для выбранной системы функций, теорема доказана.

Теорема 20.2. Если линейно независимые функции у1, у2,…, уп являются решениями линейного однородного уравнения (19.2) с непрерывными на отрезке [a,b] коэффициентами, то определитель Вронского для этих функций не может обратиться в нуль ни в одной точке отрезка [a,b].

Доказательство.

Пусть Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru Выберем числа Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , не все равные нулю, так, чтобы удовлетворялась система уравнений

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru (20.3)

(Определитель этой системы, неизвестными в которой считаем Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , равен W(x0) и, следовательно, равен нулю, поэтому система имеет ненулевое решение). Тогда по условию теоремы Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru - решение уравнения (19.2) с нулевыми начальными условиями Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , что следует из системы (20.3). Очевидно, что этим условиям удовлетворяет нулевое решение:

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , (20.4) а по теореме существования и единственности это решение единственно. Но при этом из равенства (20.4) следует, что функции у1, у2,…, уп линейно зависимы, что противоречит условиям теоремы. Следовательно, Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru ни в одной точке отрезка [a,b].

Замечание. В теореме 20.2 важно, что функции у1, у2,…, уп – решения уравнения (19.2). Для произвольной системы функций утверждение теоремы не справедливо.

Теорема 20.3. Общим решением на [a,b] уравнения (19.2) с непрерывными коэффициентами pi является линейная комбинация Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru (20.5) п линейно независимых на [a,b] частных решений yi с произвольными постоянными коэффициентами.

Доказательство. Для доказательства теоремы с учетом теоремы существования и единственности достаточно показать, что можно подобрать постоянные ci так, чтобы удовлетворялись произвольно заданные начальные условия:

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , (20.6) где х0 – произвольная точка отрезка [a,b].

Подставив в равенства (20.6) выражение для у вида (20.5), получим линейную систему из п уравнений относительно неизвестных с1, с2,…, сп:

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru ,

определителем которой является определитель Вронского для выбранных п линейно независимых решений рассматриваемого уравнения, который по теореме 20.2 не равен нулю. Следовательно, по правилу Крамера система имеет решение при любых правых частях. Теорема доказана.

Следствие. Максимальное число линейно независимых решений однородного уравнения (19.2) равно его порядку.

Определение 20.3. Любые п линейно независимых решений однородного линейного уравнения (19.2) называются его фундаментальной системой решений.

Таким образом, общее решение уравнения (19.2) является линейной комбинацией любой его фундаментальной системы решений.

Лекция 21.

Однородные линейные дифференциальные уравнения с постоянными коэффициентами. Построение фундаментальной системы решений. Неоднородные линейные дифференциальные уравнения. Частное и общее решения.

Определим вид частных решений однородного линейного уравнения

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , (21.1)

в котором коэффициенты ai постоянны. Можно показать, что они имеют вид Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , где k – постоянная. Действительно, при этом Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , и после подстановки в уравнение (21.1) получаем:

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru ,

или, после сокращения на ekx,

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru - (21.2)

так называемое характеристическое уравнение для уравнения (21.1). Числа k, являющиеся его решениями, при подстановке в функцию Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru дают частные решения уравнения (21.1). Исследуем различные возможности количества и вида решений характеристического уравнения.

  1. Все корни уравнения (21.2) действительны и различны: k1, k2,…, kn . Тогда они задают максимально возможное количество линейно независимых решений уравнения (21.1) (их линейная независимость показана в примере 2 лекции 20), то есть определяют фундаментальную систему решений. Следовательно, в этом случае общее решение уравнения (21.1) может быть записано в виде: Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . Пример. Общее решение уравнения Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru можно найти, решив характеристическое уравнение Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . Разложим левую часть на множители: Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . Следовательно, корни характеристического уравнения: Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . Поэтому общее решение исходного уравнения имеет вид: Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru .
  2. Корни уравнения (21.2) различны, среди них есть комплексные. При этом, как было показано ранее, они образуют пары комплексно сопряженных чисел. При этом решения уравнения (21.1), соответствующие паре комплексно сопряженных решений уравнения (21.2) Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru и Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , имеют вид Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru и Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru и могут быть заменены двумя действительными решениями: действительной и мнимой частями указанных решений. Следовательно, так как Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , решениями уравнения (21.1) будут Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru и Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . Пример. Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru
  3. Характеристическое уравнение имеет кратные корни. В этом случае число линейно независимых решений предыдущих типов меньше п, и для получения фундаментальной системы нужно найти дополнительные решения иного вида. Докажем, что при наличии у характеристического уравнения корня ki кратности αi такими решениями будут Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru Предположим вначале, что выбранный кратный корень ki = 0. Тогда характеристическое уравнение имеет вид:

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru ,

а соответствующее дифференциальное уравнение:

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru .

Очевидно, что частными решениями такого уравнения будут функции 1,x, x²,…, Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , все производные которых порядка αi и выше равны нулю. Кстати, линейная независимость такой системы функций показана в примере 1 лекции 20.

Пусть теперь корень характеристического уравнения ki кратности αi не равен нулю. Сделаем замену переменной: Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , тогда при подстановке в дифференциальное уравнение его линейность и однородность не нарушается, а коэффициенты изменяются, но по-прежнему остаются постоянными:

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru .

При этом корни характеристического уравнения

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru (21.3)

отличаются от корней уравнения

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru

на слагаемое –ki, так как при Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , то есть k = ki + p. Следовательно, уравнение (21.3) имеет корень р = 0 кратности αi , которому соответствуют линейно независимые частные решения Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . При обратной замене получаем набор линейно независимых решений исходного уравнения: Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru . (21.4)

Таким образом, каждый кратный корень уравнения (21.2) задает серию линейно независимых частных решений уравнения (21.1), количество которых равно его кратности. Следовательно, вновь построена фундаментальная система решений.

Замечание. Кратные комплексно сопряженные корни задают частные решения вида Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru .

Примеры.

1. Характеристическое уравнение для уравнения Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru имеет вид (k + 1)³=0, то есть k = -1 – корень кратности 3. Следовательно, фундаментальная система решений состоит из функций Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru , а общее решение можно записать в виде Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru .

2. Для уравнения Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru характеристическим уравнением является Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru то есть (k²+4)²= 0. Следовательно, Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru - корни кратности 2. Тогда общим решением исходного дифференциального уравнения является

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка. - student2.ru .

Наши рекомендации