Центробежные насосы специального назначения
В сельскохозяйственном производстве и в других областях часто приходится перекачивать смесь воды с твердыми материалами. Такая необходимость возникает при строительстве водохранилищ, прудов для нужд водоснабжения и орошения, при добыче удобрений в виде озерного ила (сапропеля) или торфа, песка, гравия, а также при удалении и транспортировании физиологических отходов животных и других материалов.
Для этих целей энергетические установки выполняют на базе специальных центробежных насосов: грунтовых (землесосов), песковых, багерных, фекальных, шламовых и других.
На примере грунтовых насосов (землесосов) рассмотрим особенности конструкции перечисленных насосов в сравнении с центробежными насосами для чистых жидкостей.
Землесосами называют гидравлические машины, предназначенные для транспортирования по напорным трубопроводам гидросмеси.
По принципу действия землесосы представляют собой центробежные насосы с некоторыми конструктивными изменениями, обусловленными наличием твердого материала в транспортируемой жидкости (рис.10.21).
Корпус 1 землесоса имеет постоянное сечение внутреннего канала, а не улиткообразное как у центробежного насоса, чтобы не происходило заклинивания при наличии в гидросмеси крупных включений. Для осмотра и очистки в корпусе предусмотрены люки. Материал корпуса – высококачественная сталь. В корпусе предусмотрены бронедиски 2 с обеих сторон рабочего колеса, которые меняют по мере их износа. В некоторых конструкциях землесосов внутреннюю поверхность корпуса гуммируют с целью уменьшения износа самого корпуса и предохранения его от разрушения ударными нагрузками.
Рабочие колеса 3 в основном закрытого типа, т.е. такие, в которых лопасти помещены между дисками. Число лопастей три - четыре. рабочее колесо подвержено износу больше любой другой части землесоса. Для уменьшения износа рабочие колеса гуммируют и покрывают твердыми сплавами. материал колеса - это высоколегированная сталь с добавками хрома, никеля, молибдена, вольфрама, ванадия, титана, ниобия, кобальта, марганца и др..
Гидросмесь, попадая между бронедисками и дисками колеса, вызывает повышенный износ обеих деталей. Поэтому в этот зазор с двух сторон колеса подается под давлением вода от вспомогательного насоса, благодаря чему происходит отжим абразивных частиц. Давление воды несколько выше давления развиваемого землесосом, но очень не на много, ибо в противном случае землесос будет нагнетать обедненную смесь.
Рис.10.21.
Характер работы землесоса коренным образом отличается от центробежного насоса, перекачивающего однородную жидкость.
Так как землесос перекачивает гидросмесь, плотность которой выше плотности воды, то и развиваемый вакуум на входе повышен и весьма часто Нвак> . В этом случае начинается кавитация, о которой говорилось выше. Землесосы из-за вынужденных конструктивных отступлений от классических конструкций водяных насосов имеют пологие характеристики Н= f(Q) (рис.10.22) и при сравнительно небольшом изменении напора резко изменяют подачу. Скорость движения гидросмеси и гидравлические потери во всасывающем трубопроводе возрастают, что способствует возникновению кавитации.
Рис.10.22
Отсутствие обратного клапана на всасывающем трубопроводе и наличие абразивной среды вынуждают для заливки землесоса применять единственно возможный способ – эжектирование.
Насосы трения
по ГОСТ17398-72, насос трения – это динамический насос, в котором жидкая среда перемещается под воздействием сил трения.
Эти насосы включают в себя весьма разнообразные как по принципу преобразования энергии, так и по виду рабочих органов механизмы и устройства.
К насосам трения относятся вихревые, струйные, воздушные, шнековые, дисковые, вибрационные, лабиринтные, свободно–вихревые, наклонно–дисковые, червячные, черпаковые.
Вихревые насосы
вихревой насос – это насос трения, в котором жидкая среда перемещается по периферии рабочего колеса в тангенциальном направлении.
Рабочим органом вихревого насоса является рабочее колесо 1 с радиальными или наклонными лопатками (рис.10.23), помещенное в цилиндрический корпус с малыми торцевыми зазорами.
Рис.10.23
В боковых и периферийных стенках корпуса имеется концентрический канал 2, начинающийся у входного отверстия и заканчивающийся у напорного. Канал прерывается перемычкой 4, служащей уплотнением между напорной и входной полостями. Жидкость поступает через входной патрубок 5 в канал, перемещается по нему рабочим колесом и уходит в напорный патрубок 3.
Принцип действия вихревых насосов основан на использовании центробежной силы. При вращении рабочего колеса 1 по направлению, указанному стрелкой, жидкость из входного патрубка 5 поступает на лопатку 6 рабочего колеса и перемещается по каналу 2 к нагнетательному патрубку 3. особенность этого насоса заключается в том, что жидкость при всасывании подается от периферии к центру. Порция жидкости, попавшая на лопатку, приобретает под воздействием центробежной силы кинетическую энергию и отбрасывается в канал 2, где скоростной напор преобразуется в статический (давление), под действием которого та же порция жидкости снова поступает на лопатки, и цикл повторяется. Таким образом, одна и та же порция жидкости за полный оборот рабочего колеса несколько раз отбрасывается от периферии к центру и обратно, в результате чего напор ее значительно увеличивается. Поэтому напор вихревого насоса в 4-10 раз больше, чем центробежного, при тех же размерах и частоте вращения. Большинство вихревых насосов имеют самовсасывающуюся способность, т.е. способность при пуске засосать жидкость без предварительного заполнения подводящего трубопровода. Многие вихревые насосы могут работать на смеси жидкости и газа. Недостатком вихревого насоса является низкий КПД, не превышающий 50%. Низкий КПД препятствует применению вихревого насоса при больших мощностях. Эти насосы изготавливают на подачу до 12 л/с. напор достигает 250 м, мощность доходит до 25 кВт. Частота вращения вихревого насоса, так же как и центробежного, ограничена только кавитационными явлениями. Следовательно, насос может быть непосредственно соединен с электродвигателем. Вихревые насосы непригодны для перекачивания жидкостей с большой вязкостью, вследствие того, что при увеличении вязкости напор и КПД резко падают. Вихревые насосы рекомендуется применять при Rе>20000. При этом
Rе= ,
где r – радиус центра тяжести сечения канала; u – окружная скорость рабочего колеса на радиусе r; - кинематическая вязкость.
Эти насосы непригодны также для подачи жидкостей, содержащих абразивные частицы, т.к. зазор между колесом и перемычкой 4 не превышает 0,15…0,20 мм.
Для получения более высокого давления применяют многоступенчатые вихревые насосы. В них так же, как и в многоступенчатых центробежных насосах, жидкость проходит через несколько рабочих колес, соединенных последовательно.
На рис. 10.24 показана принципиальная характеристика вихревого насоса.
Рис.10.24
Как видно из графика, характеристика вихревого насоса существенно отличается от характеристики центробежного насоса. При увеличении подачи напор, создаваемый насосом, падает по закону, близкому к закону прямой. Потребляемая мощность при этом не увеличивается как у насоса центробежного, а уменьшается тоже по закону прямой. Поэтому включение насоса рекомендуется производить при открытом положении крана (задвижки) на напорном трубопроводе.
В связи с весьма значительным повышением напора при Q→0 вихревые насосы часто снабжаются предохранительными клапанами.
Для вихревых насосов справедливы те же законы пропорциональности, что и для центробежных.
Промышленностью выпускается вихревые насосы следующих типов: В - вихревой с проходным валом; ВС – то же, самовсасывающий; ВК – вихревой консольный; ВКС – то же, самовсасывающий; ВКО – вихревой консольный обогревной (охлаждаемый); ЦВ – центробежно–вихревой; ЦВС – то же, самовсасывающий и др.
Вихревые насосы получили в настоящее время широкое распространение. Их применяют, когда требуется получить большой напор при малой подаче. Особенно перспективно их использование при перекачивании смеси жидкости и газа. В частности, их применяют для подачи легколетучих жидкостей (бензин, спирт и др.), жидкостей, насыщенных газами, сжиженных газов, кислот, щелочей и других химических агрессивных реагентов.
Струйные насосы
Согласно ГОСТу струйный насос – это насос трения, в котором жидкая среда перемещается внешним потоком жидкой среды, т.е. действие струйных насосов основано на принципе передачи кинетической энергии от одного потока к другому, обладающей меньшей кинетической энергией.
Создание напора у насосов этого типа происходит путем непосредственного смешивания обоих потоков без каких-либо промежуточных механизмов. В зависимости от назначения насоса рабочая и перекачиваемая среды (жидкость, пар, газ) могут быть одинаковыми или разными.
Рассмотрим рабочий процесс струйного насоса и найдем соотношения, определяющие его основные параметры, на примере водоструйного насоса, у которого рабочей и перекачиваемой средой является вода.
В водоструйном насосе (рис.10.25а) вода (активный поток) под давлением по трубе 2, заканчивающейся соплом 3, подается в подводящую камеру 4. Вытекая из сопла с большой скоростью Vс в виде струи, она увлекает за собой сначала воздух, и давление в камере 4 понижается, благодаря чему в камеру по всасывающему трубопроводу 1 поступает вода (пассивный поток). В камере 5 происходит смешение двух потоков и передача энергии от активного потока к пассивному. Из камеры смешения 5 общий поток направляется в диффузор 6, в котором происходит преобразование кинетической энергии в потенциальную (увеличивается давление); давление необходимо для дальнейшего движения воды по напорному трубопроводу. Напор, развиваемый водоструйным насосом, представляет собой разность удельных энергий в выходном сечении III – III и во входном I – I. Без учета потерь он может быть приравнен приращению энергии на участке между сечениями II – II и I – I камеры смешения.
Рис. 10.25
Используя уравнение Бернулли для этих двух сечений и вводя безразмерные параметры и , где и - соответственно площадь поперечного сечения камеры смешения и струи, Qс – расход сопла (струи), после ряда преобразований можно получить следующее выражение:
.
Действительный напор водоструйного насоса будет, конечно, меньше подсчитанного по полученному выше выражению за счет гидравлических потерь в приемной камере, камере смешения и диффузоре. Тем не менее, это выражение позволяет проанализировать изменение основных параметров водоструйных насосов.
На рис.10.25б приведены соотношения для S, равного 1,5; 2,5; и 4,0. Из графика видно, что с увеличением подачи напор, развиваемый водоструйным насосом, уменьшается; увеличение параметра S также вызывает уменьшение напора.
КПД водоструйного насоса определяется отношением полезной энергии жидкости к подведенной энергии, которую можно выразить следующим образом:
Эс= .
Полезная энергия определяется напором и полезной подачей. Последнюю можно определять по-разному. Если водоструйный насос используется для откачивания воды, то полезным является только расход, поступающий в подводящую камеру. В этом случае
;
КПД водоструйного насоса
.
Значение КПД в этом случае не превышает 0,25…0,30.
Если же водоструйный насос используется для водоснабжения или для охлаждения, то полезной является суммарная подача Q+Qc, и тогда
;
.
В этом случае КПД выше и может достигать 0,6…0,7.
Водоструйный насос по своему устройству весьма прост и доступен для изготовления в местных условиях. Следует, однако, иметь в виду, что для обеспечения его хорошей работы требуется правильный подбор размеров и тщательное изготовление. Существенное значение имеют форма сопла, расстояние от сопла до камеры смешения, форма камеры смешения и диффузор.
Воздушные насосы
Воздушные насосы (эрлифты) позволяют поднять жидкость на какую-то высоту, используя при этом разность плотностей.
Рассмотрим принцип действия эрлифта на примере подъема воды из скважины (рис.10.26).
Если погрузить в скважину 1 вертикальную трубу 2 и подать в нее через мелкие отверстия 3 (форсунку) воздух от компрессора по трубе 5, то в трубе 2 образуется водовоздушная эмульсия, которая поднимается до поверхности земли и поступает в емкость 6.
Рис.10.26
Из рисунка 10.26 видно, что в сечении 0-0 со стороны скважины 1 с водой и со стороны трубы 2 с эмульсией давление будет одинаковым, т.е. ρвgh = ρэмg(h+Н). высота поднятия эмульсии над уровнем воды в скважине
.
отсюда следует, что высота поднятия воды Н зависит только от двух факторов: плотности эмульсии ρэм и глубины погружения форсунки 3. зависимость между подачей и остальными рабочими параметрами эрлифта можно найти на основе следующих рассуждений.
Энергия, передаваемая компрессором в 1 с объему воздуха Qв.ат, м 3, отнесенному к атмосферному давлению при сжатии его от атмосферного давления рат. до давления р, под которым он подводится к форсунке, при изотермическом процессе определяется по формуле
.
Производимая сжатым воздухом полезная работа заключается в подъеме воды объемом Q, м3, в 1 с на высоту Н:
Nп = ρgQH.
Учитывая неизбежные потери введением КПД эрлифта η, можно написать:
или
.
Выразив давление р в паскалях при ρ=1000 кг/м3 и рат =0,1 МПа, из полученного уравнения после ряда преобразований получим искомую зависимость:
.
Из последней формулы следует, что подача эрлифта уменьшается с увеличением высоты подъема Н. при постоянных напоре и заглублении эрлифта она возрастает с увеличением Qв.ат. казалось бы, здесь кроются неограниченные возможности увеличения Q. Однако оказывается, что при слишком большом расходе воздуха эмульсия в водоподъемной трубе перестает быть однородной, что резко снижает эффективность эрлифта и приводит к уменьшению Q и H.
Что касается КПД воздушного насоса, то даже в благоприятных условиях он не превышает 0,3…0,4, а с учетом потерь в компрессоре общий КПД установки составляет обычно 0,15…0,20. Таким образом, по энергетическим показателям это не очень эффективный способ подъема воды. В то же время устройство эрлифта чрезвычайно просто, у него нет подвижных частей и поэтому не опасно попадание в него взвешенных частиц.
Шнековые насосы
Согласно ГОСТу шнековый насос – это насос трения, в котором жидкая среда перемещается через винтовой шнек в направлении его оси (рис.10.27).
Рис. 10.27
Основным рабочим органом насоса является шнек 1, представляющий собой вал с навитой на него спиралью. Как правило, шнек выполняют трехзаходной спиралью, что обеспечивает подачу воды и равнопрочность шнека при любом угле поворота.
Шнек, установленный наклонно, вращается в лотке 2, выполненном обычно из бетона. Линейная скорость кромок шнека 2…5 м/с соответствует частоте вращения 20…100 мин-1 в зависимости от диаметра шнека. Для получения такой частоты вращения приводной электродвигатель 3 соединяют с валом шнека через редуктор или клиноременную передачу 4.
Угол наклона шнека принимают 25…30°, что при обычной длине шнека 10..15 м обеспечивает высоту подъема 5…8 м. Чем больше подача, тем больше должно быть поперечное сечение шнека, а это увеличивает его жесткость.
Подача шнековых насосов колеблется от 15 до 5000 л/с при высоте подъема 6…7 м. Средний КПД шнековых насосов составляет около 0,70..0,75 и остается практически постоянным в большом диапазоне подачи.
Дисковые насосы
Это насос трения, в котором жидкая среда перемещается через рабочее колесо от центра к периферии.
Наиболее типичными насосами трения являются именно дисковые насосы. Эти насосы весьма просты по устройству и обладают некоторыми преимуществами перед насосами других типов. Устройство дискового насоса показано на рис.10.28. Он состоит из нескольких дисков 1, насаженных на вал так, что между дисками образованы полости 3 небольшой ширины. В центре дисков имеются отверстия для поступления жидкости, а в нескольких точках по периферии диска скреплены стяжками 4. При вращении ротора насоса жидкость, находящаяся в зазоре между дисками, закручивается ими за счет сил трения, и энергия от рабочего колеса передается перекачиваемой жидкости. В спиральном 5 и коническом 6 диффузорах кинетическая энергия преобразуется в потенциальную, т.е. энергию давления.
Рис. 10.28
К достоинствам дисковых насосов относятся возможность перекачивания высоковязких жидкостей, а также жидкостей с включением мелких абразивных примесей; простота конструкции; высокие кавитационные качества и малошумность.
Дисковые насосы могут найти применение и как вакуум–насосы для перекачивания абразивных жидкостей, а также как малошумные лабораторные микронасосы.
Лабиринтные насосы
Лабиринтные насосы по принципу действия близки к вихревым. Такой насос в основном состоит из цилиндрического шнека и обоймы корпуса. На этих элементах насоса имеются винтовые каналы противоположного направления. При вращении ротора насоса с гребня канала срываются вихри, в результате чего жидкость увлекается по винтовым каналам обоймы по направлению к напорному патрубку насоса. КПД этих насосов составляет 0,30…0,35. При малой подаче (2…4 м3/ч) они способны развивать значительные напоры. Детали проточной части этих насосов изготавливают из коррозионно стойких материалов. Они находят применение в химической промышленности, могут быть использованы и для подачи реагентов в системах водоподготовки и очистки сточных вод.
Вибрационные насосы
Вибрационные насосы (по ГОСТу) относятся к насосам трения, в которых жидкая среда перемещается в процессе возвратно–поступательного движения. В них используются инерционные свойства поднимаемой жидкой среды. Рабочим органом является клапан–поршень, имеющий возвратно–поступательное движение и приводимый в действие механическим вибратором. Поднимаемой жидкости сообщаются колебательные движения путем создания клапаном–поршнем попеременных усилий сжатия и разрежения, благодаря чему в жидкости возникают инерционные силы и она поднимается. Имеется несколько типов насосов, отличающихся конструктивным устройством. по расположению вибраторов различают насосы с погружным и поверхностным вибратором.
Вибрационный водоподъемник с погружным вибратором представлен на рис. 10.29. При нормальной работе насос подает 1 м3/ч воды при напоре 20 м. Максимальный напор 30 м при подаче 0,15…0,20 л/с, максимальная подача 0,9 л/с при напоре 1 м, максимальная мощность насоса 250 Вт.
Вибрационный водоподъемник с поверхностным вибратором показан на рис.10.30. источником колебания служит электромагнитный вибратор, питаемый от однофазной сети переменного тока 220 В (50 Гц) через селеновый выпрямитель. Подача насоса 1 л/с при напоре 25 м, частоте колебаний 3000 в минуту и потребляемой мощности 700 Вт.
Недостатки вибрационных насосов – невысокий КПД (0,20..0,35) и малая подача.
Рис. 10.29. Вибрационный насос с погружным вибратором (НЭБ-1/20): 1 - клапан обратный; 2 - рабочий орган (поршень); 3 - шток; 4, 6, 9, 11 - корпусные детали; 5 - диафрагма; 7 - амортизатор; 8 - якорь; 10 - электромагнит (катушки с сердечником); 12 - гибкий шланг | Рис. 10.30. Вибрационный насос с поверхностным вибратором ВПУ-1:1 - обсадная труба скважины; 2 - нижний обратный клапан; 3 - водоподъемные трубы; 4 - амортизатор пружинный; 5 - вибратор |
Объемные насосы
Объемный насос – это насос, в котором жидкая среда перемещается путем периодического изменения объема занимаемой ею камеры, попеременно сообщающейся с входом и выходом насоса. Такое определение дает ГОСТ, и по выше представленной классификации объемные насосы делятся на возвратно–поступательные и роторные.