Условие параллельности и перпендик-сти прямой и плоскости
Угол φ между прямой, заданной каноническими уравнениями
и плоскостью, определяемой общим уравнением
Ax + By + Cz + D = 0, можно рассматривать как дополнительный к углу ψ между направляющим вектором прямой и нормалью к плоскости. Тогда
Условием параллельности прямой и плоскости является при этом условие перпендикулярности векторов n и а:
Al + Bm + Cn = 0,
а условием перпендикулярности прямой и плоскости – условие параллельности этих векторов: A/l = B/m = C/n.
Вопрос
Понятие функции. Свойства задания и основные свойства
Функцией называется закон, по которому числу х из заданного множества Х, поставлено в соответствие только одно число у, пишут , при этом x называют аргументом функции, y называют значением функции.
Существуют разные способы задания функций.
1. Аналитический способ.
Аналитический способ - это наиболее часто встречающийся способ задания функции.
Заключается он в том, что функция задается формулой, устанавливающей, какие операции нужно произвести над х, чтобы найти у. Например .
Рассмотрим первый пример - . Здесь значению x = 1 соответствует , значению x = 3 соответствует и т. д.
Функция может быть задана на разных частях множества X разными функциями.
Например:
Во всех ранее приведенных примерах аналитического способа задания, функция была задана явно. То есть, справа стояла переменная y, а справа формула от переменной х. Однако, при аналитическом способе задания, функция может быть задана и неявно.
Например . Здесь, если мы задаем переменной x значение, то, чтобы найти значение переменной у (значение функции), мы должны решить уравнение. Например, для первой заданной функции при х = 3, будем решать уравнение:
. То есть, значение функции при х = 3 равно -4/3.
При аналитическом способе задания, функция может быть задана параметрически - это, когда х и у выражены через некоторый параметр t. Например,
Здесь при t = 2, x = 2, y = 4. То есть, значение функции при х = 2 равно 4.
2. Графический способ.
При графическом способе вводится прямоугольная система координат и в этой системе координат изображается множество точек с координатами (x,y). При этом . Пример:
3. Словесный способ.
Функция задается с помощью словесной формулировки. Классический пример – функция Дирихле.
«Функция равна 1, если х – рациональное число; функция равна 0, если х – иррациональное число».
4. Табличный способ.
Табличный способ наиболее удобен, когда множество Х конечно. При этом способе составляется таблица, в которой каждому элементу из множества Х, ставится в соответствие число Y.
Пример:
Табличный способ задания функции очень удобен при обработке результатов исследований.
Основные свойства функции.
1) Четность и нечетность. Функция называется четной, если для любых значений из области определения и нечетной, если. В противном случае функция называется функцией общего вида.
Пример.
а) Функция - четная (рис.3.3 а). т.к ; б) Функция - нечетная (рис.3.3 б). ; в) Функция - общего вида (рис.3.3 в). . |
График четной функции симметричен относительно оси ординат, а график нечетной функции симметричен относительно начала координат.
2) Монотонность. Функция называется возрастающей (убывающей) на промежутке , если большему значению аргумента из этого промежутка соответствует большее (меньшее) значение функции. Функции возрастающие и убывающие называются монотонными функциями.
Пример.
1) Функция - на интервале монотонно возрастает (рис.3.4а). 2) Функция - на интервале монотонно убывает (рис.3.4 б). |
3) Ограниченность. Функция называется ограниченной на промежутке , если существует такое положительное число , что для любого . В противном случает функция называется неограниченной.
- ограничена на всей числовой оси, т.к. для любого .
4) Периодичность. Функция называется периодической с периодом , если для любых из области определения функции .
Пример.
, период , т.к. для любых . |
Вопрос