Уравнение плоскости, проходящей через три точки
Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.
Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе координат.
Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М1, М2, М3 необходимо, чтобы векторы были компланарны.
() = 0
23.
Определение 2.1.
Две прямые в пространстве называются параллельными , если они лежат в одной плоскости и не имеют общих точек.
Если две прямые a и b параллельны, то, как и в планиметрии, пишут a || b . В пространстве прямые могут быть размещены так, что они не пересекаются и не параллельны. Этот случай является особым для стереометрии.
Определение 2.2.
Прямые, которые не имеют общих точек и не параллельны, называются скрещивающимися .
Теорема 2.1.
Через точку вне данной прямой можно провести прямую, параллельную данной, и притом только одну.
24.
Признак параллельности прямых |
Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Через точку вне данной прямой можно пронести прямую, параллельную этой пряиой, и притом только одну. Это утверждение сводится к аксиоме о параллельных в плоскости. Теорема. Две прямые, параллельные третьей прямой, параллельны. Пусть прямые b и с параллельны прямой а. Падо доказать, что b || с. Случай, когда прямые а, b и слежат и одной плоскости, рассмотрен в планиметрии, его опускаем. Предположим, что а, b и с не лежит в одной плоскости. Но так как две параллельные прямые расположены в одной плоскости, то можно считать, что а и b расположены и плоскости , a b и с -- в плоскости (рис. 61). На прямой с отметим точку (любую) М и через прямую b и точку M проведем плоскость . Она, , пересекает по прямой l. Прямая l не пересекает плоскость , так как если l пересекала бы , то точка их пересечения должна лежать на а (а и l — в одной плоскости) и на b (b и l — в одной плоскости). Таким образом, одна точка пересечения l и должна лежать и на прямой а, и на прямой b, что невозможно: а || b. Следовательно, а || , l || а, l || b. Поскольку a и l лежат в одной плоскости , то l совпадает с прямой с (по аксиоме параллельности), а значит, с || b. Теорема доказана. |
25.Признак параллельности прямой и плоскости
Теорема
Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости.
Доказательство
Пусть α - плоскость, a – не лежащая в ней прямая и a1 – прямая в плоскости α, параллельная прямой a. Проведем плоскость α1 через прямые a и a1. Плоскости α и α1 пересекаются по прямой a1. Если бы прямая a пересекала плоскость α, то точка пересечения принадлежала бы прямой a1. Но это невозможно, так как прямые a и a1 параллельны. Следовательно, прямая a не пересекает плоскостью α, а значит, параллельна плоскости α. Теорема доказана.
26.
Параллельность плоскостей Две плоскости называются параллельными, если они не пересекаются, т.е. не имеют ни одной общей точки. α∥β. |
Признак параллельности двух плоскостей Теорема. Если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости , то эти плоскости параллельны. Если а∥а1 и b∥b1, то α∥β. |
27.Существование плоскости, параллельной данной плоскости
Теорема
Через точку вне данной плоскости можно провести плоскость, параллельную данной, и притом только одну.
Доказательство
Проведем в данной плоскости α какие-нибудь две пересекающиеся прямые a и b. Через данную точку A проведем параллельные им прямые a1 и b1. Плоскость β, проходящая через прямые a1 и b1, по теореме о признаке параллельности плоскостей параллельна плоскости α.
Предположим, что через точку A проходит другая плоскость β1, тоже параллельная плоскости α. Отметим на плоскости β1 какую-нибудь точку С, не лежащую в плоскости β. Проведем плоскость γ через точки A, С и какую-нибудь точку B плоскости α. Эта плоскость пересечет плоскости α, β и β1 по прямым b, a и с. Прямые a и с не пересекают прямую b, так как не пересекают плоскость α. Следовательно, они параллельны прямой b. Но в плоскости γ через точку A может проходить только одна прямая, параллельная прямой b. что противоречит предположению. Теорема доказана.
28.Свойства параллельных плоскостей
Вели α∥β и они пересекаются с γ, тоа∥b. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. | Если α∥β и AB∥CD, то АВ = CD. Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны. |
29.
Перпендикулярные прямые в пространстве. Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90 градусов. c. m. k. k. m. c. k. Пересекающиеся. Скрещивающиеся.
30.
Теорема 1 ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ. Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости. | |
Доказательство:Пусть а прямая, перпендикулярная прямым b и c в плоскости . Тогда прямая а проходит через точкуА пересечения прямых b и c. Докажем, что прямая а перпендикулярна плоскости . Проведем произвольную прямую х через точкуА в плоскости и покажем, что она перпендикулярна прямой а. Проведем в плоскости произвольную прямую, не проходящую через точку А и пересекающую прямые b, c и х. Пусть точками пересечения будут В, С и Х. Отложим на прямой а от точки А в разные стороны равные отрезки АА1 и АА2. Треугольник А1СА2 равнобедренный, так как отрезок АС является высотой по условию теоремы и медианой по построению (АА1=АА2).по той же причине треугольник А1ВА2 тоже равнобедренный. Следовательно, треугольники А1ВС и А2ВС равны по трем сторонам. Из равенства треугольников А1ВС и А2ВС следует равенство углов А1ВХ и А2ВХ и, следовательно равенство треугольников А1ВХ и А2ВХ по двум сторонам и углу между ними. Из равенства сторон А1Х и А2Х этих треугольников заключаем, что треугольник А1ХА2 равнобедренный. Поэтому его медиана ХА является также высотой. А это и значит, что прямая х перпендикулярна а. По определению прямаяа перпендикулярна плоскости . Теорема доказана. |
31.32
Теорема 2 1-ое СВОЙСТВО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ. Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой. | |
Доказательство: Пусть а1 и а2 - 2 параллельные прямые и плоскость, перпендикулярная прямой а1. Докажем, что эта плоскость перпендикулярна и прямой а2. Проведем через точку А2 пересечения прямой а2 с плоскостью произвольную прямую х2 в плоскости . Проведем в плоскости через точку А1 пересечения прямой а1 с прямую х1, параллельную прямой х2. Так как прямая а1 перпендикулярна плоскости , то прямые а1 и x1перпендикулярны. А по теореме 1 параллельные им пересекающиеся прямые а2 и х2 тоже перпендикулярны. Таким образом, прямая а2 перпендикулярна любой прямой х2 в плоскости . А это ( по определению)значит, что прямая а2 перпендикулярна плоскости . Теорема доказана. Смотри также опорную задачу №2. | |
Теорема 3 2-ое СВОЙСТВО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ. Две прямые, перпендикулярные одной и той же плоскости, параллельны. | |
Доказательство: Пусть а и b - 2 прямые, перпендикулярные плоскости . Допутим, что прямые а и b не параллельны. Выберем на прямой b точкуС, не лежащую в плоскости . Проведем через точку С прямую b1, параллельную прямой а. Прямая b1 перпендикулярна плоскости по теореме 2. Пусть В и В1 - точки пересечения прямых b и b1 с плоскостью . Тогда прямая ВВ1 перпендикулярна пересекающимся прямым b и b1. А это невозможно. Мы пришли к противоречию. Теорема доказана. |
33.Перпендикуляром, опущенным из данной точки данную плоскость, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, перпендикулярной плоскости. Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.
Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости. Конец отрезка, лежащий в плоскости, называется основанием наклонной. Отрезок, соединяющий основания перпендикуляра наклонной, проведенных из одной и той же точки, называется проекцией наклонной.
AB – перпендикуляр к плоскости α.
AC – наклонная, CB – проекция.
Формулировка теоремы
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна к наклонной.
Доказательство
Пусть AB — перпендикуляр к плоскости α, AC — наклонная и c — прямая в плоскости α, проходящая через точку C и перпендикулярная проекции BC. Проведем прямую CK параллельно прямой AB. Прямая CK перпендикулярна плоскости α (так как она параллельна AB), а значит, и любой прямой этой плоскости, следовательно, CK перпендикулярна прямой c. Проведем через параллельные прямые AB и CK плоскость β (параллельные прямые определяют плоскость, причем только одну). Прямая c перпендикулярна двум пересекающимся прямым, лежащим в плоскости β, это BC по условию и CK по построению, значит, она перпендикулярна и любой прямой, принадлежащей этой плоскости, значит, перпендикулярна и прямой AC.